skip to main content

Influence of the Mesoporous Polymer Matrix Nature on the Formation of Catalytically Active Ruthenium Nanoparticles

Mikhail Sulman  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation
Valentin Doluda  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation
Maksim Grigoryev  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation
Oleg Manaenkov  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation
Anastasiya Filatova  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation
Vladimir Molchanov  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation
Alexander Sidorov  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation
Alexey Bykov  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation
Irina Shkileva  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation
Aleksandrina Sulman  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation
Barry Stein  -  Department of Biology, Indiana University, Bloomington, IN 47405,, United States
*Valentuna Matveeva  -  Department of Biotechnology and Chemistry, Tver State Technical University, A.Nikitina str., 22, Tver 170026,, Russian Federation

Citation Format:
Cover Image
Abstract

This paper reports on ruthenium nanoparticles formation and stabilization by hypercrosslinked poly-styrene and the catalytic properties of the nanocomposites obtained. Hypercrosslinked polystyrene with functional groups and without them was used. The nanocomposites were characterized using low-temperature nitrogen physisorption, X-ray photoelectron spectroscopy and transmission electron mi-croscopy. It is established that the tertiary amine group of the support influences both formation of ru-thenium nanoparticles, and their catalytic properties in the selective hydrogenation of D-glucose. ©2015 BCREC UNDIP. All rights reserved.

Received: 27th July 2015; Revised: 4th December 2015; Accepted: 5th December 2015

How to Cite: Sulman, M., Doluda, V., Grigoryev, M., Manaenkov, O., Filatova, A., Molchanov, V., Si-dorov, A., Bykov, A., Shkileva, I., Sulman, A., Stein, B., Matveeva, V. (2015). Influence of the Mesoporous Polymer Matrix Nature on the Formation of Catalytically Active Ruthenium Nanoparticles. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (3): 313-323. (doi:10.9767/bcrec.10.3.8824.313-323)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.3.8824.313-323

Fulltext View|Download
Keywords: Ruthenium Nanoparticles; Mesoporous Polymer Matrix; Hypercrosslinked Polystyrene; Tertiary Amine Group; Hydrogenation of D-glucose

Article Metrics:

  1. Fendler, J.H. (1998). Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications. Wiley -VCH: New York
  2. Wieckowski, A., Savinova, E.R., Vayenas, C.G. (2003). Catalysis and Electrocatalysis at Nanoparticle Surfaces. Marcel Dekker: New York
  3. Schmid G. (2004). Nanoparticles: From Theory to Application. Wiley – VCH: Weinheim
  4. Somorjai, G.A., Contreras, A.M., Montano, M., Rioux, R.M. (2006). Clusters, Surfaces, and Catalysis. Proceedings of the National Academy of Sciences of the United State, 103(28): 10577-10583
  5. Astruc, D., Lu, F., Aranzaes, J.R. (2005). Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition, 44(48): 7852-7872
  6. Mueller, C., Nijkamp M.G., Vogt, D. (2005). Continuous homogeneous catalysis. European Journal of Inorganic Chemistry, 2005(20): 4011-4021
  7. Bronstein, L. M. (2004). in Encyclopedia of Nanoscience and Nanotechnology. Nalwa, H.S. (Ed.), American Scientific Publishers:CA
  8. Bronstein, L.M. (2004). in Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker:New York
  9. Bronstein, L.M., Matveeva, V.G., Sulman, E.M. (2007). Nanoparticulate Catalysts Based on Nanostructured Polymers. Nanoparticles and Catalysis. AstrucCopyright:WILEY-VCH
  10. Bronstein, L.M., Sidorov, S.N., Valetsky, P.M. (2004). Nanostructured polymeric systems as nanoreactors for nanoparticle formation. Russian Chemical Reviews, 73 (5): 501–515
  11. Sulman, E., Doluda, V., Dzwigaj, S., Marceau, E., Kustov, L., Tkachenko, O., Bykov, A., Matveeva, V., Sulman, M., Lakina, N. (2007). Catalytic properties of Ru nanoparticles introduced in a matrix of hypercrosslinked polystyrene toward the low-temperature oxidation of D-glucose. Journal of Molecular Catalysis A, 278(1-2):112-119
  12. Tsvetkova, I.B., Matveeva, V.G., Doluda, V.Y., Bykov, A.V., Sidorov, A.I., Schennikov, S.V., Sulman, M.G., Valetsky, P.M., Stein, B.D., Chen, Ch-H., Sulman, E.M., Bronstein, L.M. (2012). Pd(II) nanoparticles in porous polystyrene: factors influencing the nanoparticle size and catalytic properties. Journal of Materials Chemistry, 22:6441-6448
  13. Aleksienko, N.N., Pastukhov, A.V., Davankov, V.A., Belyakova, L.D., Voloshchuk, A.M. (2004). Sorption Properties of Carbonizates of Hypercrosslinked Polystyrene. Russian Journal of Physical Chemistry, 78:1992-1998
  14. Tsyurupa, M.P., Blinnikova, Z.K., Proskurina, N.A., Pastukhov, A.V., Pavlova, L.A., Davankov, V.A. (2009). Hypercrosslinked Polystyrene: The First Nanoporous Polymeric Material. Nanotechnologies in Russia, 4:665-675
  15. Kuusisto, J., Tokarev, A.V., Murzina, E.V., Roslund, M.U., Mikkola, J.-P., Murzin, D.Yu., Salmi, T. (2007). From Renewable Raw Materials to High Value-Added Fine Chemicals Catalytic Hydrogenation and Oxidation of D-Lactose. Catalysis Today, 121:92−99
  16. Kuusisto, J., Mikkola, J.-P., Casal, P.P., Karhu, H., Väyrynen, J., Salmi, T. (2005). Kinetics of the Catalytic Hydrogenation of D-Fructose over a CuO−ZnO Catalyst. Chemical Engineering Journal , 115:93−102
  17. Kuusisto, J., Mikkola, J.-P., Sparv, M., Wärna, J., Karhu, H., Salmi, T. (2008). Kinetics of the Catalytic Hydrogenation of D-Lactose over a Carbon Supported Ruthenium Catalyst. Chemical Engineering Journal , 139:69−77
  18. Kuusisto, J.; Mikkola, J.-P.; Sparv, M.; Wärna, J.; Heikkilä, H.; Peralä, R.; Väyrynen, J.; Salmi, T. (2006). Hydrogenation of Lactose over Sponge Nickel Catalysts Kinetics and Modelling. Industrial & Engineering Chemistry Research, 45:5900−5910
  19. Doluda, V.Yu., Wärna, J., Aho, A., Bykov, A.V., Sidorov, A.I., Sulman, E.M., Bronstein, L.M., Salmi, T., Murzin, D.Yu. (2013). Kinetics of Lactose Hydrogenation over Ruthenium Nanoparticles in Hypercrosslinked Polystyrene. Industrial & Engineering Chemistry Research, 52:14066−14080
  20. Hoffer, B.W., Crezee, E., Mooijman, P.R.M., van Langeveld, A.D., Kapteijn, F., Moulijn, J.A. (2003). Carbon supported Ru catalysts as promising alternative for Raney-type Ni in the selective hydrogenation of D – glucose. Catalysis Today, 79-80:35-41
  21. Ahmed, M.J., Khadom, A.A., Kadhum, A.A.H. (2009). Optimization Hydrogenation Process of D-Glucose to D-sorbitol Over Raney Nickel Catalyst. European Journal of Applied engineering & Scienctific Research, 130 (2):294−304
  22. Elliot, D.C., Peterson, K.L., Muzatko, D.S., Alderson, E.V., Hart, T.R. (2004). Effects of trace contaminants on catalytic processing of biomass-derived feedstocks. Applied Biochemistry and Biotechnology, 113:807−825
  23. Cortright, R.D., Davda, R.R., Dumesic, J.A. (2002). Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418:964−967
  24. Castoldi, M.C.M., Câmara, L.D.T., Aranda, D.A.G. (2009). Kinetic modeling of sucrose hydrogenation in the production of sorbitol and mannitol with ruthenium and nickel-Raney catalysts. Reaction Kinetics and Catalysis Letters, 98:83−89
  25. Crezee, E., Hoffer, B.W., Berger, R.J., Makkee, M., Kapteijn, F., Moulijn, J.A. (2003). Three-phase hydrogenation of D-glucose over a carbon supported ruthenium catalyst mass transfer and kinetics. Applied Catalysis A, 251:1−17
  26. Kusserow, B., Schimpf, S., Claus, P. (2003). Hydrogenation of Glucose to Sorbitol over Nickel and Ruthenium Catalysts. Advanced Synthesis & Catalysis, 345:289−299
  27. Schiweek, H., Bär, A., Vogel, R., Schwarz, E., Kunz, M. (1999). Ullmann's Encyclopedia of Industrial Chemistry. Wiley:Weinheim
  28. Gallezot, P., Nicolaus, N., Fleche, G., Perrard, A. (1998). Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor. Journal of Catalysis, 180(1):51–55
  29. Van Gorp, K., Boerman, E., Cavenaghi, C.V., Berben, P.H. (1999). Catalytic hydrogenation of fine chemicals: sorbitol production. Catalysis Today, 52:349-361
  30. Su, F., Lv, L., Lee, F.Y., Liu, T., Cooper, A.I., Zhao, X.S. (2007). Thermally reduced Ru nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics. Journal of the American Chemical Society, 129: 14213-14223
  31. Zhou, W., Thomas, J.M., Shephard, D.S., Johnson, B.F.G, Ozkaya, D. Maschmeyer, T., Bell, R.G., Ge, Q. (1998) Ordering of ruthenium cluster carbonyls in mesoporous silica. Science, 280:705-708
  32. Hulea, V., Brunel, D., Galarneau, A., Kooyman, P.J., Fajula, F. (2005). Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous and Mesoporous Materials, 79:185-194
  33. Lakshmi Kantam, M., Purna Chandra Rao, B., Choudary, B.M., Sreedhar B. (2006). Selective Transfer Hydrogenation of Carbonyl Compounds by Ruthenium Nanoclusters Supported on Alkali-Exchanged Zeolite Beta. Advanced Synthesis & Catalysis, 348(14):1970–1976
  34. Sidorov, S.N., Bronstein, L.M., Danakov, V.A., Tsyurupa, M.P., Solodovnikov, S.P., Valetsky, P.M., Wilder, E.A., Spontak, R.J. (1999). Cobalt Nanoparticle Formation in the Pores of Hyper-Cross-Linked Polystyrene: Control of Nanoparticle Growth and Morphology. Chemistry of Materials, 11:3210-3215
  35. Sidorov, S., Volkov, I., Davankov, V., Tsyurupa, M., Valetsky, P., Bronstein, L., Karlinsey, R., Zwanziger, J., Matveeva, V., Sulman, E., Lakina, N., Wilder, E., Spontak, R. (2001). Platinum-Containing Hyper-Cross-Linked Polystyrene as a Modifier-Free Selective Catalyst for L-Sorbose Oxidation. Journal of the American Chemical Society, 123:10502-10510
  36. Bronstein, L.M., Goerigk, G., Kostylev, M., Pink, M., Khotina, I.A., Valetsky, P.M., Matveeva, V.G., Sulman, E.M., Sulman, M.G., Bykov, A.V., Lakina, N.V., Spontak, R.J. (2004). Structure and Catalytic Properties of Pt-Modified Hyper-Cross-Linked Polystyrene Exhibiting Hierarchical Porosity . Journal of Physical Chemistry B, 108:18234-18242
  37. Sulman, E., Nikoshvili, L., Matveeva, V., Tyamina, I., Sidorov, A., Bykov, A., Demidenko, G., Stein, B., Bronstein, L. (2012). Palladium Containing Catalysts Based on Hypercrosslinked Polystyrene for Selective Hydrogenation of Acetylene Alcohols. Topics in Catalysis, 55:492-497
  38. Sapunov, V.N., Grigoryev, M.Ye., Sulman, E.M., Konyaeva, M.B., Matveeva, V.G. (2013). D-Glucose Hydrogenation over Ru Nanoparticles Embedded in Mesoporous Hypercrosslinked Polystyrene. Journal of Physical Chemistry A,117(20):4073–4083
  39. Pan, J., Li, J., Wang, C., Yang, Z. (2007). Multi-wall carbon nanotubes supported ruthenium for glucose hydrogenation to sorbitol. Reaction Kinetics and Catalysis Letters, 90(2):233-242

Last update:

No citation recorded.

Last update:

No citation recorded.