skip to main content

SATELLITE-DERIVED BATHYMETRY USING RANDOM FOREST ALGORITHM AND WORLDVIEW-2 IMAGERY

*Masita Dwi Mandini Manessa  -  Graduate School of Science and Engineering, Yamaguchi University, Ube, Japan, and, Japan
Ariyo Kanno  -  Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, Japan
Masahiko Sekine  -  Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, Japan
Muhammad Haidar  -  Center for Thematic Mapping and Integration, Geospatial Information Agency, Indonesia
Koichi Yamamoto  -  Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, Japan
Tsuyoshi Imai  -  Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, Japan
Takaya Higuchi  -  Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, Japan

Citation Format:
Abstract

In empirical approach, the satellite-derived bathymetry (SDB) is usually derived from a linear regression. However, the depth variable in surface reflectance has a more complex relation. In this paper, a methodology was introduced using a nonlinear regression of Random Forest (RF) algorithm for SDB in shallow coral reef water. Worldview-2 satellite images and water depth measurement samples using single beam echo sounder were utilized. Furthermore, the surface reflectance of six visible bands and their logarithms were used as an input in RF and then compared with conventional methods of Multiple Linear Regression (MLR) at ten times cross validation. Moreover, the performance of each possible pair from six visible bands was also tested. Then, the estimated depth from two methods and each possible pairs were evaluated in two sites in Indonesia: Gili Mantra Island and Panggang Island, using the measured bathymetry data. As a result, for the case of all bands used the RF in compared with MLR showed better fitting ensemble, -0.14 and -1.27m of RMSE and 0.16 and 0.47 of R2 improvement for Gili Mantra Islands and Panggang Island, respectively. Therefore, the RF algorithm demonstrated better performance and accuracy compared with the conventional method. While for best pair identification, all bands pair wound did not give the best result. Surprisingly, the usage of green, yellow, and red bands showed good water depth estimation accuracy.

 

Fulltext View|Download
Keywords: Satellite-derived bathymetry; Worldview-2; Random Forest; Multiple Linear Regression

Article Metrics:

  1. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

  2. Diesing, M., et al. (2014). Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Continental Shelf Research, 84, 107–119.

  3. Digital Globe. (2012). Radiometric Use of WorldView-2 Imagery. Available online: http://www.digitalglobe.com/downloads/Radiometric_Use_of_WorldView-2_Imagery.pdf">    

  4. Doxani, G., et al. (2012). Shallow-water bathymetry over variable bottom types using multispectral Worldview-2 image. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(8), 159–164. [https://doi.org/10.5194/isprsarchives-xxxix-b8-159-2012">CrossRef]

  5. Eugenio, F., Marcello, J., & Martin, J. (2015). High-resolution maps of bathymetry and benthic habitats in shallow-water environments using multispectral remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3539–3549. [https://doi.org/10.1109/tgrs.2014.2377300">CrossRef]

  6. Flener, C., et al. (2012). Comparison of empirical and theoretical remote sensing based bathymetry models in river environments. River Research and Applications, 28(1), 118–133. [https://doi.org/10.1002/rra.1441">CrossRef]

  7. Jupp, D. L. B. (1988). Background and extensions to depth of penetration (DOP) mapping in shallow coastal waters. In Proceedings of the Symposium on Remote Sensing of the Coastal Zone (p. IV--2).

  8. Kanno, A., & Tanaka, Y. (2012). Modified Lyzenga’s method for estimating generalized coefficients of satellite-based predictor of shallow water depth. IEEE Geoscience and Remote Sensing Letters, 9(4), 715–719. [https://doi.org/10.1109/lgrs.2011.2179517">CrossRef]

  9. Kerr, J. M. (2011). Worldview-02 offers new capabilities for the monitoring of threatened coral reefs. In Proceedings of the Geospatial World Forum.

  10. Knudby, A., et al. (2013). Mapping Coral Reef Resilience Indicators Using Field and Remotely Sensed Data. Remote Sensing, 5(3), 1311–1334. [http://doi.org/10.3390/rs5031311">CrossRef]

  11. Lee, K. R., et al. (2011). Determination of bottom-type and bathymetry using WorldView-2. Proc. SPIE Ocean Sens. Monitoring III, 80300D--1.

  12. Liceaga-Correa, M. A., & Euan-Avila, J. I. (2002). Assessment of coral reef bathymetric mapping using visible Landsat Thematic Mapper data. International Journal of Remote Sensing, 23(1), 3–14. [https://doi.org/10.1080/01431160010008573">CrossRef]

  13. Lyzenga, D. R. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17(3), 379. [http://doi.org/10.1364/AO.17.000379">CrossRef]

  14. Lyzenga, D. R., Malinas, N. P., & Tanis, F. J. (2006). Multispectral bathymetry using a simple physically based algorithm. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2251–2259. [http://doi.org/10.1109/TGRS.2006.872909">CrossRef]

  15. Paredes, J. M., & Spero, R. E. (1983). Water depth mapping from passive remote sensing data under a generalized ratio assumption. Applied Optics, 22(8), 1134. [http://doi.org/10.1364/AO.22.001134">CrossRef]

  16. Stumpf, R. P., Holderied, K., & Sinclair, M. (2003). Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48(1part2), 547–556. [http://doi.org/10.4319/lo.2003.48.1_part_2.0547">CrossRef]

  17. Yuzugullu, O., & Aksoy, A. (2014). Generation of the bathymetry of a eutrophic shallow lake using WorldView-2 imagery. Journal of Hydroinformatics, 16(1), 50. [http://doi.org/10.2166/hydro.2013.133">CrossRef]

  18.  


Last update:

  1. Improving the Accuracy of Satellite-Derived Bathymetry Using Multi-Layer Perceptron and Random Forest Regression Methods: A Case Study of Tavşan Island

    Osman İsa Çelik, Gürcan Büyüksalih, Cem Gazioğlu. Journal of Marine Science and Engineering, 11 (11), 2023. doi: 10.3390/jmse11112090
  2. A Comparative Analysis to Model Bathymetry using Multi-sensor Satellite Imageries

    Prayudha Hartanto, Yustisi Lumban-Gaol, Ratna Sari Dewi. IOP Conference Series: Earth and Environmental Science, 618 (1), 2020. doi: 10.1088/1755-1315/618/1/012027
  3. Application of machine learning algorithms and Sentinel-2 satellite for improved bathymetry retrieval in Lake Victoria, Tanzania

    Makemie J. Mabula, Danielson Kisanga, Siajali Pamba. The Egyptian Journal of Remote Sensing and Space Sciences, 26 (3), 2023. doi: 10.1016/j.ejrs.2023.07.003
  4. Shallow Water Bathymetry Derived by Machine Learning and Multitemporal Satellite Images

    Tatsuyuki Sagawa, Yuta Yamashita, Toshio Okumura, Tsutomu Yamanokuchi. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019. doi: 10.1109/IGARSS.2019.8899043
  5. Nearshore bathymetry and seafloor property studies from Space lidars: CALIPSO and ICESat-2

    Xiaomei Lu, Yongxiang Hu, Ali Omar, Yuekui Yang, Mark Vaughan, Sharon Rodier, Anne Garnier, Robert Ryan, Brian Getzewich, Charles Trepte. Optics Express, 30 (20), 2022. doi: 10.1364/OE.471444
  6. European Spatial Data for Coastal and Marine Remote Sensing

    Khishma Modoosoodun Nicolas, Lucas Drumetz, Sébastien Lefèvre, Dirk Tiede, Touria Bajjouk, Jean-Christophe Burnel. 2023. doi: 10.1007/978-3-031-16213-8_6
  7. Extracting Coastal Water Depths from Multi-Temporal Sentinel-2 Images Using Convolutional Neural Networks

    Yustisi Lumban-Gaol, Ken Arroyo Ohori, Ravi Peters. Marine Geodesy, 45 (6), 2022. doi: 10.1080/01490419.2022.2091696
  8. Investigating the Shallow-Water Bathymetric Capability of Zhuhai-1 Spaceborne Hyperspectral Images Based on ICESat-2 Data and Empirical Approaches: A Case Study in the South China Sea

    Yuan Le, Mengzhi Hu, Yifu Chen, Qian Yan, Dongfang Zhang, Shuai Li, Xiaohan Zhang, Lizhe Wang. Remote Sensing, 14 (14), 2022. doi: 10.3390/rs14143406
  9. Uji Akurasi Metode Berbasis Citra Satelit untuk Ekstraksi Data Batimetri

    Ayu Nur Safi'i, Ratna Sari Dewi. TEKNIK, 41 (2), 2020. doi: 10.14710/teknik.v0i0.29516
  10. A Sub-Bottom Type Adaption-Based Empirical Approach for Coastal Bathymetry Mapping Using Multispectral Satellite Imagery

    Xue Ji, Yi Ma, Jingyu Zhang, Wenxue Xu, Yanhong Wang. Remote Sensing, 15 (14), 2023. doi: 10.3390/rs15143570
  11. CNN-Based Estimation of Water Depth from Multispectral Drone Imagery for Mosquito Control

    Qianyao Shen, K.T.Y. Mahima, Kasun De Zoysa, Luca Mottola, Thiemo Voigt, Markus Flierl. 2023 IEEE International Conference on Image Processing (ICIP), 2023. doi: 10.1109/ICIP49359.2023.10222934
  12. Satellite Derived Bathymetry Using Machine Learning and Multi-Temporal Satellite Images

    Tatsuyuki Sagawa, Yuta Yamashita, Toshio Okumura, Tsutomu Yamanokuchi. Remote Sensing, 11 (10), 2019. doi: 10.3390/rs11101155
  13. Prediction of Depth of Seawater Using Fuzzy C-Means Clustering Algorithm of Crowdsourced SONAR Data

    Ahmadhon Akbarkhonovich Kamolov, Suhyun Park. Sustainability, 13 (11), 2021. doi: 10.3390/su13115823
  14. Monitoring Beach Topography and Nearshore Bathymetry Using Spaceborne Remote Sensing: A Review

    Edward Salameh, Frédéric Frappart, Rafael Almar, Paulo Baptista, Georg Heygster, Bertrand Lubac, Daniel Raucoules, Luis Almeida, Erwin Bergsma, Sylvain Capo, Marcello De Michele, Deborah Idier, Zhen Li, Vincent Marieu, Adrien Poupardin, Paulo Silva, Imen Turki, Benoit Laignel. Remote Sensing, 11 (19), 2019. doi: 10.3390/rs11192212
  15. The application of satellite derived bathymetry for coastline mapping

    R S Dewi, I Sofian, Suprajaka. IOP Conference Series: Earth and Environmental Science, 950 (1), 2022. doi: 10.1088/1755-1315/950/1/012088
  16. Estimation of shallow bathymetry using Sentinel-2 satellite data and random forest machine learning: a case study for Cheonsuman, Hallim, and Samcheok Coastal Seas

    Jae-yeop Kwon, Hye-kyeong Shin, Da-hui Kim, Hyeon-gyu Lee, Jin-kwang Bouk, Jung-hyun Kim, Tae-ho Kim. Journal of Applied Remote Sensing, 18 (01), 2024. doi: 10.1117/1.JRS.18.014522
  17. Multiresolution Satellite-Derived Bathymetry in Shallow Coral Reefs: Improving Linear Algorithms with Geographical Analysis

    Camila B. L. da Silveira, Gil M.R. Strenzel, Mauro Maida, Tereza C.M. Araújo, Beatrice P. Ferreira. Journal of Coastal Research, 36 (6), 2020. doi: 10.2112/JCOASTRES-D-19-00029.1
  18. Development of bathymetry extraction model from SPOT 7 satellite image

    K T Setiawan, D N BR Ginting, G Winarso, M D M Manessa, N Anggraini, A Julzarika, I Effendi, Surahman, S Rosid, A H Supardjo. IOP Conference Series: Earth and Environmental Science, 284 (1), 2019. doi: 10.1088/1755-1315/284/1/012032
  19. A novel reflectance transformation and convolutional neural network framework for generating bathymetric data for long rivers: A case study on the Bei River in South China

    Ting On Chan, Simin Zhang, Linyuan Xia, Ming Luo, Jinhua Wu, Joseph Awange. International Journal of Applied Earth Observation and Geoinformation, 127 , 2024. doi: 10.1016/j.jag.2024.103682
  20. Simulation-based investigation of the generality of Lyzenga's multispectral bathymetry formula in Case-1 coral reef water

    Masita Dwi Mandini Manessa, Ariyo Kanno, Tatsuyuki Sagawa, Masahiko Sekine, Nurjannah Nurdin. Estuarine, Coastal and Shelf Science, 200 , 2018. doi: 10.1016/j.ecss.2017.10.014
  21. Satellite-derived bathymetry using machine learning and optimal Sentinel-2 imagery in South-West Florida coastal waters

    S.S.J.D. Mudiyanselage, A. Abd-Elrahman, B. Wilkinson, V. Lecours. GIScience & Remote Sensing, 59 (1), 2022. doi: 10.1080/15481603.2022.2100597
  22. Satellite-derived bathymetry based on machine learning models and an updated quasi-analytical algorithm approach

    Zhongqiang Wu, Zhihua Mao, Wei Shen, Dapeng Yuan, Xianliang Zhang, Haiqing Huang. Optics Express, 30 (10), 2022. doi: 10.1364/OE.456094
  23. Obtaining low water line contour value for enclave claim regime 12 nautical miles on Hatohobei Island Republic of Palau against the Republic of Indonesia in according with UNCLOS 1982 using satellite-derived bathymetry

    A Kurniawan, A I Santoso. IOP Conference Series: Earth and Environmental Science, 389 (1), 2019. doi: 10.1088/1755-1315/389/1/012028
  24. High-Resolution Satellite Bathymetry Mapping: Regression and Machine Learning-Based Approaches

    Francisco Eugenio, Javier Marcello, Antonio Mederos-Barrera, Ferran Marques. IEEE Transactions on Geoscience and Remote Sensing, 60 , 2022. doi: 10.1109/TGRS.2021.3135462
  25. Machine Learning Based Estimation of Coastal Bathymetry From ICESat-2 and Sentinel-2 Data

    Nan Xu, Lin Wang, Han-Su Zhang, Shilin Tang, Fan Mo, Xin Ma. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17 , 2024. doi: 10.1109/JSTARS.2023.3326238
  26. Automated High-Resolution Bathymetry from Sentinel-1 SAR Images in Deeper Nearshore Coastal Waters in Eastern Florida

    Sanduni D. Mudiyanselage, Ben Wilkinson, Amr Abd-Elrahman. Remote Sensing, 16 (1), 2023. doi: 10.3390/rs16010001
  27. A Slope-Assisted Back Propagation Method for Bathymetric Mapping

    Jinshan Zhu, Yongjie Cui, Yue Zhang, Jian Qin, Fei Yin, Ruifu Wang. IEEE Transactions on Geoscience and Remote Sensing, 61 , 2023. doi: 10.1109/TGRS.2023.3307764
  28. Revisiting bathymetry dynamics in Lake Urmia using extensive field data and high-resolution satellite imagery

    Mohammad Danesh-Yazdi, Majid Bayati, Massoud Tajrishy, Behdad Chehrenegar. Journal of Hydrology, 603 , 2021. doi: 10.1016/j.jhydrol.2021.126987
  29. Assessing Derawan Island’s Coral Reefs over Two Decades: A Machine Learning Classification Perspective

    Masita Dwi Mandini Manessa, Muhammad Al Fadio Ummam, Anisya Feby Efriana, Jarot Mulyo Semedi, Farida Ayu. Sensors, 24 (2), 2024. doi: 10.3390/s24020466
  30. Shallow Water Bathymetry Retrieval Using a Band-Optimization Iterative Approach: Application to New Caledonia Coral Reef Lagoons Using Sentinel-2 Data

    Sélim Amrari, Emmanuel Bourassin, Serge Andréfouët, Benoit Soulard, Hugues Lemonnier, Romain Le Gendre. Remote Sensing, 13 (20), 2021. doi: 10.3390/rs13204108
  31. Analysis of the Spatio-Temporal Evolution of Dredging from Satellite Images: A Case Study in the Principality of Asturias (Spain)

    Vanesa Mateo-Pérez, Marina Corral-Bobadilla, Francisco Ortega-Fernández, Vicente Rodríguez-Montequín. Journal of Marine Science and Engineering, 9 (3), 2021. doi: 10.3390/jmse9030267
  32. Satellite Derived Bathymetry with Sentinel-2 Imagery: Comparing Traditional Techniques with Advanced Methods and Machine Learning Ensemble Models

    Tyler Susa. Marine Geodesy, 45 (5), 2022. doi: 10.1080/01490419.2022.2064572
  33. Underwater Topography Inversion in Liaodong Shoal Based on GRU Deep Learning Model

    Zihao Leng, Jie Zhang, Yi Ma, Jingyu Zhang. Remote Sensing, 12 (24), 2020. doi: 10.3390/rs12244068
  34. Satellite-Derived Bathymetry for Selected Shallow Maltese Coastal Zones

    Gareth Darmanin, Adam Gauci, Alan Deidun, Luciano Galone, Sebastiano D’Amico. Applied Sciences, 13 (9), 2023. doi: 10.3390/app13095238
  35. Satellite-Derived Bottom Depth for Optically Shallow Waters Based on Hydrolight Simulations

    Yuxin Wang, Xianqiang He, Yan Bai, Teng Li, Difeng Wang, Qiankun Zhu, Fang Gong. Remote Sensing, 14 (18), 2022. doi: 10.3390/rs14184590
  36. SaTSeaD: Satellite Triangulated Sea Depth Open-Source Bathymetry Module for NASA Ames Stereo Pipeline

    Monica Palaseanu-Lovejoy, Oleg Alexandrov, Jeff Danielson, Curt Storlazzi. Remote Sensing, 15 (16), 2023. doi: 10.3390/rs15163950
  37. Semi-automated bathymetry using Sentinel-2 for coastal monitoring in the Western Mediterranean

    Sandra Paola Viaña-Borja, Angels Fernández-Mora, Richard P. Stumpf, Gabriel Navarro, Isabel Caballero. International Journal of Applied Earth Observation and Geoinformation, 120 , 2023. doi: 10.1016/j.jag.2023.103328
  38. Synergistic utilization of optical and microwave satellite data for coastal bathymetry estimation

    Ankita Misra, Balaji Ramakrishnan, Aidy M. Muslim. Geocarto International, 37 (8), 2022. doi: 10.1080/10106049.2020.1829100
  39. Satellite-derived bathymetry combined with Sentinel-2 and ICESat-2 datasets using machine learning

    Congshuang Xie, Peng Chen, Zhenhua Zhang, Delu Pan. Frontiers in Earth Science, 11 , 2023. doi: 10.3389/feart.2023.1111817
  40. Bathymetry Inversion Using Attention-Based Band Optimization Model for Hyperspectral or Multispectral Satellite Imagery

    Yingxi Wang, Ming Chen, Xiaotao Xi, Hua Yang. Water, 15 (18), 2023. doi: 10.3390/w15183205

Last update: 2024-05-21 21:20:23

  1. Active-passive spaceborne data fusion for mapping nearshore bathymetry

    Forfinski-Sarkozi N.. Photogrammetric Engineering and Remote Sensing, 85 (4), 2019. doi: 10.14358/PERS.85.4.281
  2. A Comparative Analysis to Model Bathymetry using Multi-sensor Satellite Imageries

    Prayudha Hartanto, Yustisi Lumban-Gaol, Ratna Sari Dewi. IOP Conference Series: Earth and Environmental Science, 618 (1), 2020. doi: 10.1088/1755-1315/618/1/012027
  3. Shallow Water Bathymetry Derived by Machine Learning and Multitemporal Satellite Images

    Tatsuyuki Sagawa, Yuta Yamashita, Toshio Okumura, Tsutomu Yamanokuchi. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019. doi: 10.1109/IGARSS.2019.8899043
  4. Application of the methods of remote sensing of the earth to study the bathymetry of the coastal part of the astana reservoir (Kazakhstan)

    Akiyanova F.. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 19 (2), 2019. doi: 10.5593/sgem2019/2.2/S10.056
  5. Geographically weighted regression approach for shallow water depth estimation using multispectral satellite imageries

    Lumban-Gaol Y.A.. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 43 , 2020. doi: 10.5194/isprs-archives-XLIII-B3-2020-453
  6. Multiresolution Satellite-Derived Bathymetry in Shallow Coral Reefs: Improving Linear Algorithms with Geographical Analysis

    Camila B. L. da Silveira, Gil M.R. Strenzel, Mauro Maida, Tereza C.M. Araújo, Beatrice P. Ferreira. Journal of Coastal Research, 36 (6), 2020. doi: 10.2112/JCOASTRES-D-19-00029.1
  7. Simulation-based investigation of the generality of Lyzenga's multispectral bathymetry formula in Case-1 coral reef water

    Masita Dwi Mandini Manessa, Ariyo Kanno, Tatsuyuki Sagawa, Masahiko Sekine, Nurjannah Nurdin. Estuarine, Coastal and Shelf Science, 200 , 2018. doi: 10.1016/j.ecss.2017.10.014
  8. Obtaining low water line contour value for enclave claim regime 12 nautical miles on Hatohobei Island Republic of Palau against the Republic of Indonesia in according with UNCLOS 1982 using satellite-derived bathymetry

    A Kurniawan, A I Santoso. IOP Conference Series: Earth and Environmental Science, 389 (1), 2019. doi: 10.1088/1755-1315/389/1/012028
  9. Assessing the effect of various training and testing set ratios to model the satellite derived bathymetry

    Dewi R.S.. IOP Conference Series: Earth and Environmental Science, 127 (1), 2020. doi: 10.1088/1755-1315/500/1/012032
  10. Optimization of the random forest algorithm for multispectral derived bathymetry

    Manessa M.D.M.. International Journal of Geoinformatics, 16 (3), 2020.
  11. Underwater Topography Inversion in Liaodong Shoal Based on GRU Deep Learning Model

    Zihao Leng, Jie Zhang, Yi Ma, Jingyu Zhang. Remote Sensing, 12 (24), 2020. doi: 10.3390/rs12244068
  12. Synergistic utilization of optical and microwave satellite data for coastal bathymetry estimation

    Ankita Misra, Balaji Ramakrishnan, Aidy M. Muslim. Geocarto International, 37 (8), 2022. doi: 10.1080/10106049.2020.1829100
  13. A machine learning approach to multispectral satellite derived bathymetry

    Tonion F.. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5 (3), 2020. doi: 10.5194/isprs-Annals-V-3-2020-565-2020