skip to main content

LAND USE ANALYSIS USING TIME SERIES OF VEGETATION INDEX DERIVED FROM SATELLITE REMOTE SENSING IN BRANTAS RIVER WATERSHED, EAST JAVA, INDONESIA

*Kunihiko Yoshino  -  Faculty of Engineering, Information and Systems, University of Tsukuba, Japan
Yudi Setiawan orcid  -  Faculty of Forestry, Bogor Agricultural University, Indonesia
Eikichi Shima scopus  -  School of Veterinary Medicine, Kitasato University, Japan

Citation Format:
Abstract
In this study, time series datasets of MODIS EVI (Enhanced Vegetation Index) data from 2002 and 2011 in the Brantas River watershed located in eastern Java, Indonesia were analyzed and classified to make ten land use maps for each year, in order to support watershed land use planning which takes into account local land use and trends in land use change. These land use maps with eight types of main land use categories were examined. During the 10 years period, forested area has expanded, while upland, paddy rice field, mixed garden and plantation have decreased. One of the reasons for this land use change is ascribed to tree planting under the joint forest management system by local people and the state forest corporation.
Fulltext View|Download
Keywords: Time series dataset; Land use classification; MODIS vegetation index; Brantas watershed

Article Metrics:

  1. Adi, S., Jänen, I., & Jennerjahn, T. C. (2013). History of development and attendant environmental changes in the Brantas River Basin, Java, Indonesia, since 1970. Asian Journal of Water, Environment and Pollution, 10(1), 5–15.

  2. Amato, F., et. al. (2016). The effects of urban policies on the development of urban areas. Sustainability, 8(4), 297. [https://doi.org/10.3390/su8040297">Crossref]

  3. Asia Forest Network. (2004). Communities Transforming forestland, Java, Indonesia.

  4. BBWS Brantas. (2011). Balai Besar Wilayah Sungai Brantas Edisi 2011. Directorate General of Water Resources. Ministry of Public Works and Housing, Republic of Indonesia.

  5. Bhat, A., Ramu, K., & Kemper, K. (2005). Institutional and policy analysis of river basin management -The Brantas River Basin, East Java, Indonesia. World Bank Policy Research Working Paper 3611, May 2005.

  6. BLH Prov. Jawa Timur. (2009). Land cover change in Brantas watershed for year 2000-2008.

  7. Campagnolo, M. L., Sun, Q., Liu, Y., Schaaf, C., Wang, Z., & Román, M. O. (2016). Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS. Remote Sensing of Environment, 175, 52–64. [https://doi.org/10.1016/j.rse.2015.12.033">Crossref]

  8. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. [https://doi.org/10.1016/0034-4257(91)90048-b">Crossref]

  9. Department of Forestry. (2008). Recalculation of Land Cover in Indonesia 2008. The Agency of Forestry Planning, Department of Forestry, Republic of Indonesia.

  10. Di Palma, F., et. al. (2016). A SMAP Supervised Classification of Landsat Images for Urban Sprawl Evaluation. ISPRS International Journal of Geo-Information, 5(7), 109. [https://doi.org/10.3390/ijgi5070109">Crossref]

  11. Foley, J. A., et. al. (2005). Global consequences of land use. Science, 309(5734), 570–574. [https://doi.org/10.1126/science.1111772">Crossref]

  12. Foley, J. A., et. al. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. [https://doi.org/10.1038/nature10452">Crossref]

  13. Friedl, M. A., et. al. (2002). Global land cover mapping from MODIS: algorithms and early results. Remote Sensing of Environment, 83(1), 287–302. [https://doi.org/10.1016/s0034-4257(02)00078-0">Crossref]

  14. Haruyama, S., Ooya, M., & Mizuhara, Y. (1992). Development and conservation of rivers in active volcane zones -case study of Brantas watershed in the eastern Java, Indonesia. Journal of Geography, 101(2), 89–106.

  15. Hidayat, F. (2009). Floods and climate change--Observations from Java. CRBOM Small Publicafions.

  16. Himiyama, Y., & Okamoto, J. (1992). Land use change and causes. Committee of agricultural policy survey, Tokyo.

  17. Huete, A., et. al. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. [https://doi.org/10.1016/s0034-4257(02)00096-2">Crossref]

  18. JBIC Institute. (2008). Aid Effectiveness to Infrastructure: A Comparative Study of East Asia and Sub-Saharan Africa: Case Studies of East Asia. JBICI Research Paper No.36-2.

  19. JICA. (2011). History-Goods for the future generation-The engineers spirits cultivated by one river. JICA’s World, Special topic.

  20. Kaneko, K., et al. (1998). Iwanami Kouza, Global environment. Sustainable Social Systems, 10.

  21. LPDAAC. (2013a). MODIS. Retrieved from https://lpdaac.usgs.gov/products/modis_products_table.htm

  22. LPDAAC. (2013b). MODIS Overview. Retrieved from https://lpdaac.usgs.gov/products/modis_overview

  23. LPDAAC. (2013c). MODIS Reprojection Tool. https://lpdaac.usgs.gov/tools/modis_reprojection_tool.htm

  24. LPDAAC. (2013d). Vegetation Indices 16-Day L3 Global. Retrieved from https://lpdaac.usgs.gov/products/modis_products_ table/myd13q1

  25. Mathworks. (2009). Matlab Online Documentation. Tech. Rep. The Mathemowrks, Inc.

  26. Morita, Y. (1985). Introduction to new statistics. Nihon-hyouronn Inc., Tokyo.

  27. Muhammad, M., et al. (2016). Analysis of the dynamics pattern of paddy field utilization using MODIS image in East Java. Procedia Environmental Sciences, 33, 44–53. [https://doi.org/10.1016/j.proenv.2016.03.055">Crossref]

  28. NASA. (2013). Reverb|ECHO. Retrieved from http://reverb.echo.nasa.gov/reverb/

  29. Oobayasi, N., & Kojima, N. (2002). Remote Sensing for strategists. Tokyo: Fuji Tecnosis System.

  30. Parry, M. L., et al. (2007). Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

  31. Pasandaran, E. (2007). Management of Infrastructure irrigation in national food security framework. Analisis Kebijakan Pertanian, 5(2), 126–149.

  32. Ramankutty, N., & Foley, J. A. (1999). Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles, 13(4), 997–1027. [https://doi.org/10.1029/1999gb900046">Crossref]

  33. Richards, J. (2006). Remote Sensing Digital Image Analysis. https://doi.org/10.1007/978-3-642-30062-2

  34. Sakamoto, T., et al. (2006). Spatio--temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sensing of Environment, 100(1), 1–16. [https://doi.org/10.1016/j.rse.2005.09.007">Crossref]

  35. Setiawan, Y., Yoshino, K., & Philpot, W. D. (2013). Characterizing temporal vegetation dynamics of land use in regional scale of Java Island, Indonesia. Journal of Land Use Science, 8(1), 1–30. [https://doi.org/10.1080/1747423x.2011.605178">Crossref]

  36. Setiawan, Y., Yoshino, K., & Prasetyo, L. B. (2014). Characterizing the dynamics change of vegetation cover on tropical forestlands using 250m multi-temporal MODIS EVI. International Journal of Applied Earth Observation and Geoinformation, 26, 132–144. [https://doi.org/10.1016/j.jag.2013.06.008">Crossref]

  37. Solano, R., Didan, K., & Jacobson, A. (2013). MODIS Vegetation Index user’s Guide version 2.00. Retrieved from http://vip.arizona.edu/documents/MODIS/ MODIS_VI_Users Guide_ 01_2012.pdf  

  38. Tan, B., et al. (2006). The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sensing of Environment, 105(2), 98–114. [https://doi.org/10.1016/j.rse.2006.06.008">Crossref]

  39. Widianto, W., Suprayogo, D., Sudarto, S., & Lestariningsih, I. D. (2010). Implementasi Kaji Cepat Hidrologi (RHA) di Hulu DAS Brantas, Jawa Timur. Working Paper World Agroforestry Centre, 121.

  40. WMO. (2013). World Weather Information Services. Retrieved from http://www.worldweather.org/043%20/c00648.htm">

  41. Yoshino, K., & Ishioka, Y. (2005). Guidelines for soil conservation towards integrated basin management for sustainable development: a new approach based on the assessment of soil loss risk using remote sensing and GIS. Paddy and Water Environment, 3(4), 235–247. [https://doi.org/10.1007/s10333-005-0023-5">Crossref]


Last update:

  1. Time-series analysis of satellite imagery for detecting vegetation cover changes in Indonesia

    Takuro Furusawa, Takuya Koera, Rikson Siburian, Agung Wicaksono, Kazunari Matsudaira, Yoshinori Ishioka. Scientific Reports, 13 (1), 2023. doi: 10.1038/s41598-023-35330-1
  2. Drought Damage Assessment for Crop Insurance Based on Vegetation Index by Unmanned Aerial Vehicle (UAV) Multispectral Images of Paddy Fields in Indonesia

    Yu Iwahashi, Gunardi Sigit, Budi Utoyo, Iskandar Lubis, Ahmad Junaedi, Bambang Hendro Trisasongko, I Made Anom Sutrisna Wijaya, Masayasu Maki, Chiharu Hongo, Koki Homma. Agriculture, 13 (1), 2022. doi: 10.3390/agriculture13010113

Last update: 2024-12-25 16:28:47

  1. Impact of Land Use Land Cover Changes on River Discharge at Brantas Catchment Area using SHETRAN Model

    Suroso . IOP Conference Series: Materials Science and Engineering, 127 (1), 2020. doi: 10.1088/1757-899X/982/1/012037