skip to main content

MONITORING AND PREDICTING LAND USE-LAND COVER (LULC) CHANGES WITHIN AND AROUND KRAU WILDLIFE RESERVE (KWR) PROTECTED AREA IN MALAYSIA USING MULTI-TEMPORAL LANDSAT DATA

Jibrin Gambo  -  Department of Civil Engineering and Geospatial Information Science Research Centre (GISRC), Faculty of Engineering, Universiti Putra Malaysia (UPM) and School of General Studies, Binyaminu Usman Polytechnic, Hadejia P.M.B 013 Jigawa State, Nigeria, Nigeria
*Helmi Zulhaidi Mohd Shafri orcid  -  Universiti Putra Malaysia (UPM), Malaysia
Nur Shafira Nisa Shaharum  -  Department of Civil Engineering and Geospatial Information Science Research Centre (GISRC), Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400, Serdang, Malaysia, Malaysia
Fauzul Azim Zainal Abidin  -  Department of Wildlife and National Parks (DWNP), KM10 Jalan Cheras, 56100 Kuala Lumpur, Malaysia, Malaysia
Mohd Taufik Abdul Rahman  -  Department of Wildlife and National Parks (DWNP), KM10 Jalan Cheras, 56100 Kuala Lumpur, Malaysia, Malaysia

Citation Format:
Abstract
Natural and anthropogenic activities surrounding a Protected Area (PA) may cause its natural area to change in terms of Land Use-Land Cover (LULC). Thus, there is need of environmental change monitoring within and around PA because of its significant values to ecosystem at conservation scales. Effects and influences of local community within and around PA turn into the major problems for natural resource and conservations management as well as environmental impact assessment. Ascertaining the complex interface in relations to changes and its driving factors over period of time within and around PA is significant in order to predict future LULC changes, build alternative scenarios and serve as tools for decision making.  The main objective of this work was to evaluate temporal change detection and prediction of LULC as well as the trends of changes from 1989 to 2016 within and around Krau Wildlife Reserve (KWR).  The cloud issues were mitigated by producing cloud free image and object-based image analysis (OBIA) was adopted after a comparison with pixel-based analysis for overall accuracy and kappa statistics. The comparison of classified maps had produced a satisfactory results of overall accuracies of 91%, 86% and 90% for 1989, 2004 and 2016 respectively. The natural/dense forest between periods of 1989-2016 was decreased whereas built-up and agricultural/sparse forest were increased. The simulation model of Land Change Modeler (LCM) was utilized with digital elevation model (DEM) and past LULC maps to project future LULC pattern using Markov chain. The predicted map trend showed an increase of dense forest converted to agricultural/sparse forest in the north-western, and urban/built-up in east-southern part of KWR. The study is important for the conservation of habitat species and monitoring the current status of the KWR
Fulltext View|Download
Keywords: LULC; OBIA; Protected Area; Krau Wildlife Reserve; Land Change Modeler

Article Metrics:

  1. Ahmad, C. B., Abdullah, J., & Jaafar, J. (2012). Community Activities Around Protected Areas and the Impacts on the Environment at Krau Wildlife Reserve, Malaysia. Procedia-Social and Behavioral Sciences, 68, 383–394. [https://doi.org/10.1016/j.sbspro.2012.12.235">Crossref]

  2. Areendran, G., Raj, K., Mazumdar, S., & Sharma, A. (2017). Land Use and Land Cover Change Analysis for Kosi River Wildlife Corridor in Terai Arc Landscape of Northern India: Implications for Future Management. Tropical Ecology, 58(1).

  3. Balaji, S. A., Geetha, P., & Soman, K. P. (2016). Change Detection of Forest Vegetation using Remote Sensing and GIS Techniques in Kalakkad Mundanthurai Tiger Reserve - (A Case Study). Indian Journal of Science and Technology, 9(30), 1–6. [https://doi.org/10.17485/ijst/2016/v9i30/99022">Crossref]

  4. Bozkaya, A. G., Balcik, F. B., Goksel, C., & Esbah, H. (2015). Forecasting land-cover growth using remotely sensed data: a case study of the Igneada protection area in Turkey. Environmental Monitoring and Assessment, 187(3). [https://doi.org/10.1007/s10661-015-4322-z">Crossref]

  5. Bush, A., Sollmann, R., Wilting, A., Bohmann, K., Cole, B., Balzter, H., … Yu, D. W. (2017). Connecting Earth observation to high-throughput biodiversity data. Nature Ecology & Evolution, 1(7), 176. [https://doi.org/10.1038/s41559-017-0176">Crossref]

  6. Conservation and Environmental Management Division. (2006). Biodiversity in Malaysia.

  7. DANCED, & Jabatan Perlindungan Hidupan Liar dan Taman Negara. (2001). Krau Wildlife Reserve Management Plan. Perhilitan.

  8. de Oliveira, S. N., de Carvalho Júnior, O. A., Gomes, R. A. T., Guimarães, R. F., & McManus, C. M. (2017). Deforestation analysis in protected areas and scenario simulation for structural corridors in the agricultural frontier of Western Bahia, Brazil. Land Use Policy, 61, 40–52. [https://doi.org/10.1016/j.landusepol.2016.10.046">Crossref]

  9. Desclée, B., Bogaert, P., & Defourny, P. (2006). Forest change detection by statistical object-based method. Remote Sensing of Environment, 102(1–2), 1–11. [https://doi.org/10.1016/j.rse.2006.01.013">Crossref]

  10. Despot Belmonte, K., & Bieberstein, K. (2016). Protected Planet Report 2016. How Protected Areas Contribute to Achieving Global Targets for Biodiversity.

  11. Dudley, N., & Stolton, S. (2008). Defining protected areas: An international conference in Almeria, Spain Mayo 2007. IUCN Protected Areas Categories Summit.

  12. Dutta, K., Reddy, C. S., Sharma, S., & Jha, C. S. (2016). Quantification and Monitoring of Forest Cover Changes in Agasthyamalai Biosphere Reserve, Western Ghats, India (1920-2012). Current Science, 110(4), 508. [https://doi.org/10.18520/cs/v110/i4/508-520">Crossref]

  13. Hackman, K. O., Gong, P., & Wang, J. (2017). New land-cover maps of Ghana for 2015 using Landsat 8 and three popular classifiers for biodiversity assessment. International Journal of Remote Sensing, 38(14), 4008–4021. [https://doi.org/10.1080/01431161.2017.1312619">Crossref]

  14. Hruby, F., Melamed, S., Ressl, R., Stanley, D., Balancing, C., Imagery, S., & Data, B. (2016). Mosaicking Mexico - The Big Picture of Big Data, XLI (July), 407–412. [https://doi.org/10.5194/isprsarchives-XLI-B2-407-2016">Crossref]

  15. Islam, K., Jashimuddin, M., Nath, B., & Nath, T. K. (2018). Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 37–47. [https://doi.org/10.1016/j.ejrs.2016.12.005">Crossref]

  16. Kindu, M., Schneider, T., Teketay, D., & Knoke, T. (2013). Land Use/Land Cover Change Analysis Using Object-Based Classification Approach in Munessa-Shashemene Landscape of the Ethiopian Highlands. Remote Sensing, 5(5), 2411–2435. [https://doi.org/10.3390/rs5052411">Crossref]

  17. Kumar, K. S., Valasala, N. V. A. S. S., Subrahmanyam, J. V. V, Mallampati, M., Shaik, K., & Ekkirala, P. (2015). Prediction of Future Land Use Land Cover Changes of Vijayawada City Using Remote Sensing and Gis. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 2(3), 91–97.

  18. Lin, T. S. (2016). Sumber Air Orang Asli Tercemar Akibat Pembalakan. Pahang: Astro Awani. Retrieved May Tuesday, 2017, from http://www.astroawani.com/berita-malaysia/sumber-air-orang-asli- tercemar-akibat-pembalakan-111904. (2017).

  19. Mishra, V., Rai, P., & Mohan, K. (2014). Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute Jovan Cvijic, SASA, 64(1), 111–127. [https://doi.org/10.2298/ijgi1401111m">Crossref]

  20. Munthali, K. G., & Murayama, Y. (2011). Land use/cover change detection and analysis for Dzalanyama forest reserve, Lilongwe, Malawi. Procedia - Social and Behavioral Sciences, 21, 203–211. [https://doi.org/10.1016/j.sbspro.2011.07.035">Crossref]

  21. Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H. G., Tarantino, C., Adamo, M., & Mairota, P. (2013). Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45–59. [https://doi.org/10.1016/j.ecolind.2012.09.014">Crossref]

  22. Norawi, M. F. (2017). Alam dakwa 2,000 balak dicuri di Kuala Krau. Sinar Online, pp. 4–7.

  23. Ranjan, A. K., and Akash Anand, S, V., & Singh, R. K. (2016). LU/LC Change Detection and Forest Degradation Analysis in Dalma Wildlife Sanctuary Using 3S Technology: A Case Study in Jamshedpur-India. AIMS Geosciences, 2(4), 273–285. [https://doi.org/10.3934/geosci.2016.4.273">Crossref]

  24. Reddy, C. S., Singh, S., Dadhwal, V. K., Jha, C. S., Rao, N. R., & Diwakar, P. G. (2017). Predictive modelling of the spatial pattern of past and future forest cover changes in India. Journal of Earth System Science, 126(1). [https://doi.org/10.1007/s12040-016-0786-7">Crossref]

  25. Reveshty, M. A. (2011). The Assessment and Predicting of Land Use Changes to Urban Area Using Multi-Temporal Satellite Imagery and GIS: A Case Study on Zanjan, IRAN (1984-2011). Journal of Geographic Information System, 03(04), 298–305. [https://doi.org/10.4236/jgis.2011.34026">Crossref]

  26. Son, N.-T., Chen, C.-F., Chang, N.-B., Chen, C.-R., Chang, L.-Y., & Thanh, B.-X. (2015). Mangrove Mapping and Change Detection in Ca Mau Peninsula, Vietnam, Using Landsat Data and Object-Based Image Analysis. IEEE  Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 503–510. [https://doi.org/10.1109/jstars.2014.2360691">Crossref]

  27. Waiyasusri, K., Yumuang, S., & Chotpantarat, S. (2016). Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model. Environmental Earth Sciences, 75(6). [https://doi.org/10.1007/s12665-016-5322-1">Crossref]

  28. Willis, K. S. (2015). Remote sensing change detection for ecological monitoring in United States protected areas. Biological Conservation, 182, 233–242. [https://doi.org/10.1016/j.biocon.2014.12.006">Crossref]

  29. Yu, W., Zhou, W., Qian, Y., & Yan, J. (2016). A new approach for land cover classification and change analysis: Integrating backdating and an object-based method. Remote Sensing of Environment, 177, 37–47. [https://doi.org/10.1016/j.rse.2016.02.030">Crossref]

  30. Zhang, C., Smith, M., Lv, J., & Fang, C. (2017). Applying time series Landsat data for vegetation change analysis in the Florida Everglades Water Conservation Area 2A during 1996{textendash}2016. International Journal of Applied Earth Observation and Geoinformation, 57, 214–223. [https://doi.org/10.1016/j.jag.2017.01.007">Crossref]


Last update:

  1. Past and future land use/land cover changes from multi-temporal Landsat imagery in Mpologoma catchment, eastern Uganda

    Jackson Bunyangha, Mwanjalolo. J.G. Majaliwa, Agnes.W. Muthumbi, Nathan.N. Gichuki, Anthony Egeru. The Egyptian Journal of Remote Sensing and Space Science, 24 (3), 2021. doi: 10.1016/j.ejrs.2021.02.003
  2. Optical remotely sensed data for mapping variations in cashew plantation distribution and associated land uses in Ogbomoso, Nigeria Southwest

    Emmanuel Dada, Oluwagbenga O. Isaac Orimoogunje, Oluwole Adebayo Eludoyin. GeoJournal, 88 (S1), 2023. doi: 10.1007/s10708-023-10861-2
  3. Monitoring of Plant Ecological Units Cover Dynamics in a Semiarid Landscape from Past to Future Using Multi-Layer Perceptron and Markov Chain Model

    Masoumeh Aghababaei, Ataollah Ebrahimi, Ali Asghar Naghipour, Esmaeil Asadi, Jochem Verrelst. Remote Sensing, 16 (9), 2024. doi: 10.3390/rs16091612
  4. A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches With Special Emphasis on Palm Oil Yield Prediction

    Mamunur Rashid, Bifta Sama Bari, Yusri Yusup, Mohamad Anuar Kamaruddin, Nuzhat Khan. IEEE Access, 9 , 2021. doi: 10.1109/ACCESS.2021.3075159
  5. The development land utilization and cover of the Jambi district are examined and forecasted using Google Earth Engine and CNN1D

    Muhammad Iqbal Habibie, Ramadhan, Nety Nurda, Dionysius Bryan Sencaki, Prabu Kresna Putra, Hari Prayogi, Agustan, Dewayany Sutrisno, Oni Bibin Bintoro. Remote Sensing Applications: Society and Environment, 34 , 2024. doi: 10.1016/j.rsase.2024.101175
  6. Tracking conservation effectiveness in the Vhembe Biosphere Reserve in South Africa using Landsat imagery

    Tanre I. Jauro, Solomon G. Tesfamichael, Isaac T. Rampedi. Environmental Monitoring and Assessment, 192 (7), 2020. doi: 10.1007/s10661-020-08416-w
  7. Assessing the tropical forest cover change in northern parts of Sonitpur and Udalguri District of Assam, India

    Ranjit Mahato, Gibji Nimasow, Oyi Dai Nimasow, Dhoni Bushi. Scientific Reports, 11 (1), 2021. doi: 10.1038/s41598-021-90595-8
  8. Impact of Climate and Land Use/Cover Changes on Streamflow in Yadot Watershed, Genale Dawa Basin, Ethiopia

    Abay Mustefa Abdule, Alemayehu Muluneh, Abraham Woldemichael. Air, Soil and Water Research, 16 , 2023. doi: 10.1177/11786221231200106
  9. Multi-temporal analysis of past and future land cover change in the highly urbanized state of Selangor, Malaysia

    Majid Azari, Lawal Billa, Andy Chan. Ecological Processes, 11 (1), 2022. doi: 10.1186/s13717-021-00350-0
  10. Using Landsat to track land use and land cover (LULC) change from 1970 to 2020 in Mayang watershed, East Jawa

    Mohamad Wawan Sujarwo, Farid Lukman Hakim, Indarto Indarto. THE 5th INTERNATIONAL CONFERENCE ON AGRICULTURE AND LIFE SCIENCE 2021 (ICALS 2021): “Accelerating Transformation in Industrial Agriculture Through Sciences Implementation”, 2583 , 2023. doi: 10.1063/5.0117111
  11. Mapping the spatial distribution and changes of oil palm land cover using an open source cloud-based mapping platform

    Nur Shafira Nisa Shaharum, Helmi Zulhaidi Mohd Shafri, Wan Azlina Wan Ab Karim Ghani, Sheila Samsatli, Husni Mobarak Prince, Badronnisa Yusuf, Ahmed Mohamed Hamud. International Journal of Remote Sensing, 40 (19), 2019. doi: 10.1080/01431161.2019.1597311
  12. Development of WebGIS using open source geospatial technologies for Krau Wildlife Reserve

    N A Azmi, H Z M Shafri, F A Z Abidin, N S N Shaharum, M M A Al-Habshi. IOP Conference Series: Earth and Environmental Science, 1064 (1), 2022. doi: 10.1088/1755-1315/1064/1/012016
  13. Monitoring Conservation of Forest in Protected Areas using Remote Sensing Change Detection Approach: a Review

    Wendy Miranda-Castro, Rosa Acevedo-Barrios, Milton Guerrero. Contemporary Problems of Ecology, 15 (6), 2022. doi: 10.1134/S1995425522060154

Last update: 2024-07-18 05:10:58

  1. Tracking conservation effectiveness in the Vhembe Biosphere Reserve in South Africa using Landsat imagery

    Tanre I. Jauro, Solomon G. Tesfamichael, Isaac T. Rampedi. Environmental Monitoring and Assessment, 192 (7), 2020. doi: 10.1007/s10661-020-08416-w
  2. Identifying factors and predicting the future land-use change of protected area in the agricultural landscape of Malaysian peninsula for conservation planning

    Rafaai N.H.. Remote Sensing Applications: Society and Environment, 18 , 2020. doi: 10.1016/j.rsase.2020.100298
  3. Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms

    Shaharum N.S.N.. Remote Sensing Applications: Society and Environment, 17 , 2020. doi: 10.1016/j.rsase.2020.100287
  4. The utilisation of cloud computing and remote sensing approach to assess environmental sustainability in Malaysia

    Shaharum N.S.N.. IOP Conference Series: Earth and Environmental Science, 127 (1), 2019. doi: 10.1088/1755-1315/230/1/012109
  5. Mapping the spatial distribution and changes of oil palm land cover using an open source cloud-based mapping platform

    Nur Shafira Nisa Shaharum, Helmi Zulhaidi Mohd Shafri, Wan Azlina Wan Ab Karim Ghani, Sheila Samsatli, Husni Mobarak Prince, Badronnisa Yusuf, Ahmed Mohamed Hamud. International Journal of Remote Sensing, 40 (19), 2019. doi: 10.1080/01431161.2019.1597311