THE EFFECT OF MINIMUM NOISE FRACTION ON MULTISPECTRAL IMAGERY DATA FOR VEGETATION CANOPY DENSITY MODELLING

DOI: https://doi.org/10.14710/mkmi.%25v.%25i.1-13
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Published: 23-04-2018
Section: Articles
Tell your colleagues Email the author
Minimum Noise Fraction (MNF) is known as one of the method to minimize noise on hyperspectral imagery. In addition, there are not many studies have tried to show the effect of MNF transform on multispectral data. This study purposes to determine the effect of MNF transform on the accuracy level of vegetation density modeling using 10 meters Sentinel-2A spatial resolution (multispectral data) and to know the cause. The study area is located in parts of Sapporo City, Hokkaido, Japan. Vegetation density is modelled through vegetation index approach, Normalized Difference Vegetation Index (NDVI). The results show that the coefficient correlation of vegetation density data and vegetation index regression after MNF transformation (0.801623) has higher value than the same regression without the MNF (0.794481). However, better correlation does not represent the better accuracy on vegetation density modeling. Accuracy calculation through standard error of estimate shows the use of MNF in multispectral data for vegetation density modeling causes the decrease of model accuracy value. The accuracy of vegetation density model without involving MNF transformation reached 91.402 %, while the model accuracy through MNF transformation before vegetation density modeling reached 90,889 %. The insignificant increased accuracy is occurred due to the limited number of multispectral image information compared to hyperspectral image data.

Keywords

Minimum Noise Fraction (MNF), multispectral, Sentinel 2A, vegetation canopy density

  1. Ignatius Salivian Wisnu Kumara 
    Universitas Gadjah Mada, Indonesia
    I am undergraduate student of Cartography and Remote Sensing Program, Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta.
  1. Bhandari, A., Kumar, A., & Singh, G. (2012). Feature Extraction Using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City, Procedia Technology, 6(2012) pp 612-621 doi: http://dx.doi.org/10.1016/j.protcy.2012.10.074
  2. Boardman, J. W., & Kruse, F. A., 1994, Automated Spectral Analysis: A Geological Example Using AVIRIS Data, North Grapevine Mountains, Nevada: in Proceedings, ERIM Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, pp. I-407 - I-418.
  3. Chen, L., Yang, X., & Zhen, G. (2017). Potential of Sentinel-2 Data for Alteration Extraction in Coal-bed Methane Reservoirs. Ore Geology Reviews, (2017) doi: http://dx.doi.org/10.1016/j.oregeorev.2017.10.009
  4. Danoedoro, P. (2012). Pengantar Penginderaan Jauh Digital. Yogyakarta: Andi Offset.
  5. Ebadi, L., Shafri, H.M., Mansor, S., & Ashurov, R. (2013). A Review of Applying Second-generation Wavelets for Noise Removal from Remote Sensing Data. Environmental Earth Sciences, 70(6), pp 2679–2690 doi: http://dx.doi.org/10.1007/s12665-013-2325-z
  6. Exelis. (2015). Background: MNF Transform. In part of ENVI Help by Exelis Visual Information Solutions, Inc. a subsidiary of Harris Corporation. USA.
  7. Fauzan, M.A., Kumara, I.S.W., Yogyantoro, R.N., …., & Wicaksono, P. (2017). Assessing the Capability of Sentinel-2 Data for Mapping Seagrass Percent Cover in Jerowaru, East Lombok. Indonesian Journal of Geography, 49(1) pp. 121 – 134.
  8. Frassy, F., Via, G., Maianti, P., & Gianinetto, M. (2013). Minimum Noise Fraction Transform for Improving the Classification of Airborne Hyperspectral Data: Two Case Studies. In 5th Workshop on Hyperspectral Image and Signal Proceeding: Evolution in Remote Sensing. June 2013.
  9. Gao, L., Zhao, B., Jia, X., Liao, W., & Zhang, B. (2017). Optimized Kernel Minimum Noise Fraction Transformation for Hyperspectral Image Classification. Remote Sens. 9, 548. doi: http://dx.doi.org/10.3390/rs9060548
  10. Green, A. A., Berman, M., Switzer, P., & Craig, M.D. (1988). A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), pp 65–74 doi: http://dx.doi.org/10.1109/36.3001
  11. Jia, X.P., Kuo, B., & Crawford, M.M. (2013). Feature Mining for Hyperspectral Image Classification. Proc. IEEE Transactions on Geoscience and Remote Sensing, 101(3), pp 676–697 doi: http://dx.doi.org/10.1109/JPROC.2012.2229082
  12. Lantzanakis, G., Mitraka, Z., & Chrysoulakis, N. (2016). Comparison of Physically & Image Based Atmospheric Correction Methods for Sentinel-2 Satellite Imagery. In Proc. of SPIE Vol. 9688, Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016) doi: http://dx.doi.org/10.1117/12.2242889
  13. Letexier, D., & Bourennane, S. (2008). Noise Removal from Hyperspectral Images by Multidimensional Filtering. IEEE Transactions on Geoscience and Remote Sensing, 46(7), pp 2061–2069.
  14. Luo, G., Chen, G., Tian, L., Qin, K. & Qian, S. (2016). Minimum Noise Fraction versus Principal Component Analysis as a Preprocessing Step for Hyperspectral Imagery Denoising, Canadian Journal of Remote Sensing, 42(2), pp 106-116. doi: http://dx.doi.org/10.1080/07038992.2016.1160772
  15. Navarro, G., Caballero, I., Silva, G., Parra, P., Vazquez, A., & Caldeira, R. (2017). Evaluation of Forest Fire on Madeira Island Using Sentinel-2A MSI Imagery. Int. J. Appl. Earth Obs. Geoinformation, 58(2017) pp 97-106 doi: http://dx.doi.org/10.1016/j.jag.2017.02.003
  16. Perasati, M., Corbane, C., Julea, A., ....., & Soille, P. (2016). Assessment of the Added-Value of Sentinel-2 for Detecting Bulid-up Areas. Remote Sensing, 8 (2016) 299 doi: http://dx.doi.org/10.3390/rs8040299
  17. Rouse, J.W., Hass, R.H., Schell, J.A., & Deering, D.W. (1974). Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of Third Earth Resources Technology Satellite-1 Symposium SP-351, pp 3010-3017
  18. Traganos, D. & Reinartz, P. (2017). Mapping Mediterranean Seagrasses with Sentinel-2 Imagery, Marine Pollution Bulletin, (2017) doi: http://dx.doi.org/10.1016/j.marpolbul.2017.06.075