skip to main content

Comparison of Land Cover Change Prediction Models: A Case Study in Kedungkandang District, Malang City

*Annisa Dira Hariyanto  -  Master Degree of Urban and Regional Planning Engineering Department, Brawijaya University, Jln. MT Haryono 167, Malang, Indonesia 65145, Indonesia
Adipandang Yudono orcid scopus publons  -  Urban and Regional Planning Engineering Department, Brawijaya University, Jln. MT Haryono 167, Malang, Indonesia 65145, Indonesia
Agus Dwi Wicaksono orcid scopus  -  Urban and Regional Planning Engineering Department, Brawijaya University, Jln. MT Haryono 167, Malang, Indonesia 65145, Indonesia

Citation Format:
Abstract

The infrastructure of Malang City is currently being directed towards the eastern and southeastern parts, Kedungkandang District. Infrastructure plays an important role in the aspect of land cover change, which raises the complexity of the emergence of urban forms and dynamics. This study compares three models, Artificial Neural Network (ANN), Logistic Regression (LR), and Multi-Criteria Evaluation (MCE), to predict changes in land cover in the Kedungkandang District using the Cellular Automata (CA) approach. The prediction results indicate that the ANN and MCE models have the highest overall Kappa values (prediction accuracy), while the ANN and LR models have the highest location-specific Kappa values. However, overall, the ANN model demonstrates the highest accuracy and performance among the other two models. This research makes a significant contribution to urban planning by highlighting the importance of using machine learning-based technology to predict land cover changes in Malang City, particularly in the Kedungkandang District. Stakeholders can leverage this technology to design more effective and sustainable infrastructure policies and implement preventive measures to mitigate the negative impacts of uncontrolled urban growth.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Untitled
Subject
Type Other
  Download (5MB)    Indexing metadata
Keywords: Modelling, Prediction, Land Cover Change, Cellular Automata

Article Metrics:

  1. Adrianto, D. W., Hasyim, A. W., Dinanti, D., Dwi, J., & Sandy, H. (2017). Valuasi Sumber Daya Lahan di Pinggiran Kota Malang (Studi Kasus: Wilayah Pinggiran Kota Malang. Kelurahan Tunggulwulung Kecamatan.

  2. Campos, P. B. R., Almeida, C. M. de, & Queiroz, A. P. de. (2018). Educational infrastructure and its impact on urban land use change in a peri-urban area: a cellular-automata based approach. Land Use Policy, 79, 774–788. https://doi.org/10.1016/j.landusepol.2018.08.036">[Crossref]

  3. Cao, Y., Zhang, X., Fu, Y., Lu, Z., & Shen, X. (2020). Urban spatial growth modeling using logistic regression and cellular automata: A case study of Hangzhou. Ecological Indicators, 113, 106200. https://doi.org/10.1016/j.ecolind.2020.106200">[Crossref]

  4. Dewa, D. D., Buchori, I., & Sejati, A. W. (2022). Assessing land use/land cover change diversity and its relation with urban dispersion using Shannon Entropy in the Semarang Metropolitan Region, Indonesia. Geocarto International, 37(26), 11151–11172. https://doi.org/10.1080/10106049.2022.2046871">[Crossref]

  5. Feng, Y., Wang, J., Tong, X., Shafizadeh-Moghadam, H., Cai, Z., Chen, S., Lei, Z., & Gao, C. (2019). Urban expansion simulation and scenario prediction using cellular automata: comparison between individual and multiple influencing factors. Environmental Monitoring and Assessment, 191(5), 291. https://doi.org/10.1007/s10661-019-7451-y">[Crossref]

  6. Fu, X., Wang, X., & Yang, Y. J. (2018). Deriving suitability factors for CA-Markov land use simulation model based on local historical data. Journal of Environmental Management, 206, 10–19. https://doi.org/10.1016/j.jenvman.2017.10.012">[Crossref]

  7. Gharaibeh, A. A., Shaamala, A. H., & Ali, M. H. (2020). Multi-Criteria Evaluation for Sustainable Urban Growth in An-Nuayyimah, Jordan; Post War Study. Procedia Manufacturing, 44, 156–163. https://doi.org/10.1016/j.promfg.2020.02.217">[Crossref]

  8. Gharaibeh, A., Shaamala, A., Obeidat, R., & Al-Kofahi, S. (2020). Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon, 6(9), e05092. https://doi.org/10.1016/j.heliyon.2020.e05092">[Crossref]

  9. Li, X., & Yeh, A. G.-O. (2001). Calibration of Cellular Automata by Using Neural Networks for the Simulation of Complex Urban Systems. Environment and Planning A: Economy and Space, 33(8), 1445–1462. https://doi.org/10.1068/a33210">[Crossref]

  10. Liang, X., Liu, X., Li, X., Chen, Y., Tian, H., & Yao, Y. (2018). Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landscape and Urban Planning, 177, 47–63. https://doi.org/10.1016/j.landurbplan.2018.04.016">[Crossref]

  11. Mienmany, B. (2018). Analysis Land use and Land cover changes and the driving forces.

  12. Mohamed, A., & Worku, H. (2020). Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Climate, 31, 100545. https://doi.org/10.1016/j.uclim.2019.100545">[Crossref]

  13. Mustafa, A., Heppenstall, A., Omrani, H., Saadi, I., Cools, M., & Teller, J. (2018). Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Computers, Environment and Urban Systems, 67, 147–156https://doi.org/10.1016/j.compenvurbsys.2017.09.009">.[Crossref]

  14. Nkweteyim, D. L. (2018). Clustering by partitioning around medoids using distance-based similarity measures on interval-scaled variables. Nigerian Journal of Technological Development, 15(1), 1–6.

  15. Nugroho, A. B., Hasyim, A. W., & Usman, F. (2018). Urban growth modelling of Malang City using artificial neural network based on multi-temporal remote sensing. Civil and Environmental Science Journal, 1(2), 52–61.

  16. Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning, 99(2), 104–114. https://doi.org/10.1016/j.landurbplan.2010.09.001">[Crossref]

  17. Qian, Y., Xing, W., Guan, X., Yang, T., & Wu, H. (2020). Coupling cellular automata with area partitioning and spatiotemporal convolution for dynamic land use change simulation. Science of The Total Environment, 722, 137738. https://doi.org/10.1016/j.scitotenv.2020.137738">[Crossref]

  18. Rofii, I. (2021). Model Perubahan Penggunaan Lahan Di Wilayah Peri Urban Kota Malang. Indonesian Journal of Spatial Planning, 2(1), 28. https://doi.org/10.26623/ijsp.v2i1.3153">[Crossref]

  19. Roodposhti, M. S., Aryal, J., & Bryan, B. A. (2019). A novel algorithm for calculating transition potential in cellular automata models of land-use/cover change. Environmental Modelling & Software, 112, 70–81. https://doi.org/10.1016/j.envsoft.2018.10.006">[Crossref]

  20. Sfa, F. E., Nemiche, M., & Rayd, H. (2020). A generic macroscopic cellular automata model for land use change: The case of the Drâa valley. Ecological Complexity, 43, 100851. https://doi.org/10.1016/j.ecocom.2020.100851">[Crossref]

  21. Shafizadeh-Moghadam, H., Tayyebi, A., & Helbich, M. (2017). Transition index maps for urban growth simulation: application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environmental Monitoring and Assessment, 189(6), 300. https://doi.org/10.1007/s10661-017-5986-3">[Crossref]

  22. Sipahioğlu, N., & Çağdaş, G. (2023). Scenario-Based Cellular Automata and Artificial Neural Networks in Urban Growth Modeling. Gazi University Journal of Science, 36(1), 20–37. https://doi.org/10.35378/gujs.998073">[Crossref]

  23. van Delden, H., McDonald, G., Shi, Y., Hurkens, J., van Vliet, J., & van den Belt, M. (2011). Integrating socio-economic and land-use models to support urban and regional planning. Proceedings of the 14th AGILE Conference.

  24. Wahyudi, A., & Liu, Y. (2016). Cellular Automata for Urban Growth Modelling: International Review for Spatial Planning and Sustainable Development, 4(2), 60–75. https://doi.org/10.14246/irspsd.4.2_60">[Crossref]

  25. Wang, R., Cai, M., Ren, C., Bechtel, B., Xu, Y., & Ng, E. (2019). Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone. Urban Climate, 28, 100455. https://doi.org/10.1016/j.uclim.2019.100455">[Crossref[

  26. White, R., & Engelen, G. (2000). High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems, 24(5), 383–400. https://doi.org/10.1016/S0198-9715(00)00012-0">[Crossref]

  27. Xing, W., Qian, Y., Guan, X., Yang, T., & Wu, H. (2020). A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation. Computers & Geosciences, 137, 104430. https://doi.org/10.1016/j.cageo.2020.104430">[Crossref]

  28. Yao, S., Chen, C., Chen, Q., Zhang, J., Li, Y., & Zeng, Y. (2022). An integrated hydrodynamic and multicriteria evaluation Cellular Automata–Markov model to assess the effects of a water resource project on waterbird habitat in wetlands. Journal of Hydrology, 607, 127561. https://doi.org/10.1016/j.jhydrol.2022.127561">[Crossref]

  29. Yeh, A. G.-O., & Li, X. (2002). Urban simulation using neural networks and cellular automata for land use planning. Advances in Spatial Data Handling: 10th International Symposium on Spatial Data Handling, 451–464.

  30. Zadbagher, E., Becek, K., & Berberoglu, S. (2018). Modeling land use/land cover change using remote sensing and geographic information systems: case study of the Seyhan Basin, Turkey. Environmental Monitoring and Assessment, 190(8), 494. https://doi.org/10.1007/s10661-018-6877-y">[Crossref]


Last update:

No citation recorded.

Last update: 2024-10-12 10:09:22

No citation recorded.