skip to main content

Tourism Potential Zone Mapping Using MCDM and Machine Learning Models in The State of Madhya Pradesh India

*Shrinwantu Raha orcid  -  Department of Geography, Bhairab Ganguly College, Belgharia, Kolkata, Pin Code:7,000,56, India
Sayan Deb orcid  -  Department of Geography, Bhairab Ganguly College, Belgharia, Pin Code: 7,000,56, India

Citation Format:
Abstract

The rich and diverse tourism attractions of Madhya Pradesh have long been recognized, but the Tourism Potential Zones (TPZs) have yet to be clearly identified. This research aimed to uncover these hidden potentials using a combination of Multi-Criteria Decision Making (MCDM) and machine learning techniques. TPZ was predicted using a approaches, including Analytic Hierarchy Process (AHP), Linear Model (LM), Elastic Net Model (EN), and K-Nearest Neighbors (KNN). Further, by combining the above models, a new ensemble model (AHP-LN-EN-KNN ensemble) was prepared. We followed the ROC-AUC (Area Under Curve) and Root Mean Squared Error (RMSE) as evaluation measures. The findings reveal a landscape of promise, with each model with accuracy levels ranging from 81.4% to 90.6%. The AUC values for the models ranged from approximately 70% to 95%, while the RMSE values ranged from 0.8 to 1.3. The ensemble model appeared with better accuracy (for training set 0.92 and for test set 0.88), higher AUC value (for training set 94.5% and for test set 89.4%) and the lowest RMSE (i.e., 0.71) value. On the other hand, the AHP was identified with higher combined RMSE (i.e., combined RMSE 1.08) and diminished AUC (i.e., for training set 70.1% and test set 70.2%). The northern, south-western, and middle regions emerge as high-potential areas, whilst the south-western edges languish with less promise. Meanwhile, the north-western expanse offers a scene of moderate potential. These findings not only inform, inspire, laying a foundation for Madhya Pradesh's long-term tourist growth.

Fulltext View|Download
Keywords: Tourism Potential Zone (TPZ); K-Nearest Neighbors Model; Analytic Hierarchy Process
Funding: NA

Article Metrics:

  1. Aburomman, A. A., & Ibne Reaz, M. B. (2016). A novel SVM-kNN-PSO ensemble method for intrusion detection system. Applied Soft Computing, 38, 360–372. https://doi.org/10.1016/j.asoc.2015.10.011">[Crossref]

  2. Acharya, A., Mondal, B. K., Bhadra, T., Abdelrahman, K., Mishra, P. K., Tiwari, A., & Das, R. (2022). Geospatial Analysis of Geo-Ecotourism Site Suitability Using AHP and GIS for Sustainable and Resilient Tourism Planning in West Bengal, India. Sustainability, 14(4), Article 4. https://doi.org/10.3390/su14042422">[Crossref]

  3. Ahmad, S. Z., & Pandey, D. N. (2016). Development and assessment of ecotourism in Panna National Park (Madhya Pradesh), India. International Journal of Applied and Universal Research3(1).1-5.

  4. Aijaz, D. A. (2022). Tourism and resource development: A study of Madhya Pradesh. International Journal of Economic Perspectives, 16(9), Article 9.

  5. Al-Areeq, A. M., Abba, S. I., Halder, B., Ahmadianfar, I., Heddam, S., Demir, V., Kilinc, H. C., Farooque, A. A., Tan, M. L., & Yaseen, Z. M. (2023). Flood Subsidence Susceptibility Mapping using Elastic-net Classifier: New Approach. Water Resources Management, 37(13), 4985–5006. https://doi.org/10.1007/s11269-023-03591-0">[Crossref]

  6. Atun, R. A., Nafa, H., & Türker, Ö. O. (2019). Envisaging sustainable rural development through ‘context-dependent tourism’: Case of Northern Cyprus. Environment, Development and Sustainability, 21(4), 1715–1744. https://doi.org/10.1007/s10668-018-0100-8">[Crossref]

  7. Ayesha, S., Hanif, M. K., & Talib, R. (2020). Overview and comparative study of dimensionality reduction techniques for high dimensional data. Information Fusion, 59, 44–58. https://doi.org/10.1016/j.inffus.2020.01.005">[Crossref]

  8. Banerjee, A. (2014). Human Resource Development in Tourism Industry in India: A Case Study of Jet Airways India Ltd. 1.

  9. Banik, S., & Mukhopadhyay, M. (2022). Model-based strategic planning for the development of community-based tourism: A case study of Ayodhya Hills in West Bengal, India. GeoJournal, 87(2), 1349–1365. https://doi.org/10.1007/s10708-020-10314-0">[Crossref]

  10. Bansal, S., Garg, I., & Sharma, G. D. (2019). Social Entrepreneurship as a Path for Social Change and Driver of Sustainable Development: A Systematic Review and Research Agenda. Sustainability, 11(4), Article 4. https://doi.org/10.3390/su11041091">[Crossref]

  11. Boateng, E. Y., Otoo, J., & Abaye, D. A. (2020). Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review. Journal of Data Analysis and Information Processing, 8(4), Article 4. https://doi.org/10.4236/jdaip.2020.84020">[Crossref]

  12. Brida, J. G., Lanzilotta, B., Moreno, L., & Santiñaque, F. (2018). A non-linear approximation to the distribution of total expenditure distribution of cruise tourists in Uruguay. Tourism Management, 69, 62–68. https://doi.org/10.1016/j.tourman.2018.05.006">[Crossref]

  13. Cankurt, S., & Subasi, A. (2022). Tourism demand forecasting using stacking ensemble model with adaptive fuzzy combiner. Soft Computing26(7), 3455-3467. https://doi.org/10.1007/s00500-021-06695-0">[Crossref]

  14. Chandravanshi, J., & Jain, N. (2023). Indigenous Art of Bastar District of Chhattisgarh: A Study of the Government Initiations for Artisans. Splint International Journal of Professionals, 10(1), 25–34. https://doi.org/10.5958/2583-3561.2023.00002.4">[Crossref]

  15. Chavan, G., & Momin, B. (2017). An integrated approach for weather forecasting over Internet of Things: A brief review. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 83–88. https://doi.org/10.1109/I-SMAC.2017.8058291">[Crossref]

  16. Chen, H.-L., Yang, B., Wang, G., Liu, J., Xu, X., Wang, S.-J., & Liu, D.-Y. (2011). A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method. Knowledge-Based Systems, 24(8), 1348–1359. https://doi.org/10.1016/j.knosys.2011.06.008">[Crossref]

  17. Chen, H., Wang, S., Guo, H., Lin, H., Zhang, Y., Long, Z., & Huang, H. (2019). Study of marine debris around a tourist city in East China: Implication for waste management. Science of the Total Environment676, 278-289. https://doi.org/10.1016/j.scitotenv.2019.04.335">[Crossref]

  18. Chen, Y., Li, Y., Gu, X., Chen, N., Yuan, Q., & Yan, M. (2021). Evaluation of tourism development potential on provinces along the Belt and Road in China: Generation of a comprehensive index system. Land10(9), 905. https://doi.org/10.3390/land10090905">[Crossref]

  19. Dedík, M., Šperka, A., Čamaj, J., & Zábovská, K. (2022). Traffic Potential Evaluation of the Regions in the Context of Rail Passenger Transport – A Case for Slovak Republic. Promet – Traffic&Transportation, 34(2), 309–321. https://doi.org/10.7307/ptt.v34i2.3880">[Crossref]

  20. Dong, J.-J., Tung, Y.-H., Chen, C.-C., Liao, J.-J., & Pan, Y.-W. (2011). Logistic regression model for predicting the failure probability of a landslide dam. Engineering Geology, 117(1), 52–61. https://doi.org/10.1016/j.enggeo.2010.10.004">[Crossref]

  21. Gohil, D. N. (2015). Role and Impact of Social Media in Tourism: A Case Study on the Initiatives of Madhya Pradesh State Tourism. International Journal of Research in Economics and Social Sciences, 5(4).8-15.

  22. Harianto, S. P., Masruri, N. W., Winarno, G. D., Tsani, M. K., & Santoso, T. (2020). Development strategy for ecotourism management based on feasibility analysis of tourist attraction objects and perception of visitors and local communities. Biodiversitas Journal of Biological Diversity, 21(2), Article 2. https://doi.org/10.13057/biodiv/d210235">[Crossref]

  23. Huang, P., Hou, M., Sun, T., Xu, H., Ma, C., & Zhou, A. (2024). Sustainable groundwater management in coastal cities: Insights from groundwater potential and vulnerability using ensemble learning and knowledge-driven models. Journal of Cleaner Production, 442, 141152. https://doi.org/10.1016/j.jclepro.2024.141152">[Crossref]

  24. Kohli, M. S. (2002). Mountains of India: Tourism, adventure and pilgrimage. Indus Publishing.

  25. Li, Z., Ye, S., & Xi, J. (2024). Assessing Risks in Cross-Regional Tourism Corridors: A Case Study of Tibetan Plateau Tourism. ISPRS International Journal of Geo-Information13(6), 171. https://doi.org/10.3390/ijgi13060171">[Crossref]

  26. Kishnani, N. (2019). Sustainable Development of Ecotourism in Madhya Pradesh: Prospects and Problems. Journal of Tourism20(1), 55-70. https://jothnbgu.in/article/JOT%20june%202019.pdf#page=61"> .

  27. Kumar, P., Madaan, S., & Bhargava, G. (2023). An Insight About Bell Metal Craft—Scopes of Improvement and Promotion. In A. Chakrabarti & V. Singh (Eds.), Design in the Era of Industry 4.0, Volume 2 (pp. 965–975). Springer Nature. https://doi.org/10.1007/978-981-99-0264-4_79">[Crossref]

  28. Lahiri, N., Rajani, M. B., Sanyal, D., Banerjee, S., & Tiwari, S. (2023). Tracing ancient itinerants and Early Medieval rulers in the forests of Bandhavgarh. South Asian Studies39(1), 76-99. https://doi.org/10.1080/02666030.2022.2163067">[Crossref]

  29. Lahiri, N., Rajani, M. B., Sanyal, D., & Banerjee, S. (2022). Exploring the forest and mapping its archaeology: Bandhavgarh National Park and Tiger Reserve, India. Current Science123(6), 772-780. http://doi.org/10.18520/cs/v123/i6/772-780">[Crossref]

  30. Leiper, N. (1990). Tourist attraction systems. Annals of Tourism Research17(3), 367-384. https://doi.org/10.1016/0160-7383(90)90004-B">[Crossref]

  31. Maaiah, B., Al-Badarneh, M., & Al-Shorman, A. (2023). Mapping potential nature-based tourism in Jordan using AHP, GIS and remote sensing. Journal of Ecotourism22(2), 260-280. https://doi.org/10.1080/14724049.2021.1968879">[Crossref]

  32. Mamun, A. A., & Mitra, S. (2012). A Methodology for Assessing Tourism Potential: Case Study Murshidabad District, West Bengal, India. 2(9). International Journal of Scientific and Research Publications. 1-8.

  33. Marrocu, E., & Paci, R. (2013). Different tourists to different destinations. Evidence from spatial interaction models. Tourism Management39, 71-83. https://doi.org/10.1016/j.tourman.2012.10.009">[Crossref]

  34. Ministry of Tourism Govt. of India (2023). Assessment of Tourist Destinations in Areas of Infrastructure and Cleanliness. https://tourism.gov.in/sites/default/files/202402/Final%20Report_Assessment%20of%20Tourist%20Destination_%20English.pdf"> .

  35. Mir, A., & Nasiri, J. A. (2018). KNN-based least squares twin support vector machine for pattern classification. Applied Intelligence, 48(12), 4551–4564. https://doi.org/10.1007/s10489-018-1225-z">[Crossref]

  36. Mirsanjari, M. M., & Mirsanjari, M. O. (2012). Study of Strategic Eco-Tourism Potential Based on Sustainable Development and Management (SSRN Scholarly Paper 2054154). https://papers.ssrn.com/abstract=2054154">

  37. Mitra, R., Saha, P., & Das, J. (2022). Assessment of the performance of GIS-based analytical hierarchical process (AHP) approach for flood modelling in Uttar Dinajpur district of West Bengal, India. Geomatics, Natural Hazards and Risk, 13(1), 2183–2226. https://doi.org/10.1080/19475705.2022.2112094">[Crossref]

  38. Mittal, K., Aggarwal, G., & Mahajan, P. (2019). Performance study of K-nearest neighbor classifier and K-means clustering for predicting the diagnostic accuracy. International Journal of Information Technology, 11(3), 535–540. https://doi.org/10.1007/s41870-018-0233-x">[Crossref]

  39. Mohanapriya, M., & Lekha, J. (2018). Comparative study between decision tree and knn of data mining classification technique. Journal of Physics: Conference Series, 1142(1), 012011. https://doi.org/10.1088/1742-6596/1142/1/012011">[Crossref]

  40. Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2015). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 44. https://doi.org/10.1007/s10661-015-5049-6">[Crossref]

  41. Natalia, P., Clara, R. A., Simon, D., Noelia, G., & Barbara, A. (2019). Critical elements in accessible tourism for destination competitiveness and comparison: Principal component analysis from Oceania and South America. Tourism Management, 75, 169–185. https://doi.org/10.1016/j.tourman.2019.04.012">[Crossref]

  42. Nugrahaeni, R. A., & Mutijarsa, K. (2016). Comparative analysis of machine learning KNN, SVM, and random forests algorithm for facial expression classification. 2016 International Seminar on Application for Technology of Information and Communication (ISemantic), 163–168. https://doi.org/10.1109/ISEMANTIC.2016.7873831">[Crossref]

  43. Okfalisa, Gazalba, I., Mustakim, & Reza, N. G. I. (2017). Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 294–298. https://doi.org/10.1109/ICITISEE.2017.8285514">[Crossref]

  44. Olivelle, P. (Ed.). (2006). Between the empires: society in India 300 BCE to 400 CE. Oxford University Press.

  45. Ovreiu, A. B., Bărsoianu, I. A., Comănescu, L., & Nedelea, A. (2018). Assessing the Accessibility of Relief for Tourism Activities. Case Study-Cozia Massif (Southern Carpathians, Romania). GeoJournal of Tourism & Geosites, 22 (2), 509–523. https://doi.org/10.30892/GTG.2222222200--330">[Crossref]

  46. Pandey, D., Mishra, S., & Shukla, S. (2014). Tourism and resource development: A case study of Madhya Pradesh. International Journal of Biological Research, 2(2), 149. https://doi.org/10.14419/ijbr.v2i2.2440">[Crossref]

  47. Porter, M.E. (1998), The Competitive Advantage of Nations, The Free Press, New York, NY.

  48. Pouya, S., & Başkaya, F. A. T. (2018). Residents’ Perceptions of Riverine Landscape Changes; Case Study of Beykoz Stream/ Istanbul. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 19(2), Article 2. https://doi.org/10.18038/aubtda.336959">[Crossref]

  49. Raha, S., & Gayen, S. K. (2022a). Application of Analytic Hierarchy Process and weighted sum techniques for green tourism potential mapping in the Gangetic West Bengal, India. GeoJournal. https://doi.org/10.1007/s10708-022-10619-2">[Crossref]

  50. Raha, S., Mondal, M., & Gayen, S. K. (2021). Ecotourism potential zone mapping by using analytic hierarchy process (AHP) and weighted linear algorithm: A study on West Bengal, India. Journal of Geographical studies5(2), 44-64. https://doi.org/10.21523/gcj5.21050201">[Crossref]

  51. Raha, S., & Gayen, S. K. (2022b). Tourism Potentiality Zone Mapping by Using the AHP Technique: A Study on Bankura District, West Bengal, India. Journal of Geographical Studies, 6(2), 58–85. https://doi.org/10.21523/gcj5.22060201">[Crossref]

  52. Raha, S., Gayen, S. K., & Deb, S. (2024). Harnessing Machine Learning and Ensemble Models for Tourism Potential Zone Prediction for the Assam State of India. Journal of Advanced Geospatial Science & Technology4(2), 29–78. http://dx.doi.org/10.21203/rs.3.rs-4364952/v1">[Crossref]

  53. Rahman, M. M. (2021). Inbound tourism in Bangladesh: The trend of competitiveness. Bangladesh Journal of Public Administration, 29(2), Article 2. http://dx.doi.org/10.36609/bjpa.v29i2.227">[Crossref]

  54. Rajan, S. I. (Ed.). (2018). India migration report 2018: Migrants in Europe. Taylor & Francis.

  55. Rakhra, D. I. K. (2020). Marketing Innovations in Tourism Industry: An Empirical Study of Madhya Pradesh. Red'shine Publication. Pvt. Ltd.

  56. Ramírez-Guerrero, G., García-Onetti, J., Arcila-Garrido, M., & Chica-Ruiz, J. A. (2021). A Tourism Potential Index for Cultural Heritage Management through the Ecosystem Services Approach. Sustainability, 13(11), Article 11. https://doi.org/10.3390/su13116415">[Crossref]

  57. Rolando, A., & Scandiffio, A. (2022). Multimodal access to minor places in heritage-rich landscapes: GIS mapping to define slow-tourism routes from the stations in the railway networks in-between Turin and Milan. Sustainability14(23), 15723. https://doi.org/10.3390/su142315723">[Crossref]

  58. Ruda, A. (2016). Exploring Tourism Possibilities using GIS-based Spatial Association Methods. Geographia Technica, 11(2), 87–101. https://doi.org/10.21163/GT_2016.112.09">[Crossref]

  59. Rutherford, J., Kobryn, H., & Newsome, D. (2015). A Case Study in the Evaluation of Geotourism Potential through Geographic Information Systems: Application in a Geology-Rich Island Tourism Hotspot. Current Issues in Tourism18(3), 267-285. https://doi.org/10.1080/13683500.2013.873395">[Crossref]

  60. Saaty, T. L. (1980). The Analytic Hierarchy Process. Mcgraw Hill, New York, 70, 34.

  61. Sahabi Abed, S., & Matzarakis, A. (2018). Quantification of the Tourism Climate of Algeria Based on the Climate-Tourism-Information-Scheme. Atmosphere, 9(7), Article 7. https://doi.org/10.3390/atmos9070250">[Crossref]

  62. Sahani, N. (2019). Assessment of ecotourism potentiality in GHNPCA, Himachal Pradesh, India, using remote sensing, GIS and MCDA techniques. Asia-Pacific Journal of Regional Science3(2), 623-646. https://doi.org/10.1007/s41685-019-00116-9">[Crossref]

  63. Saner, R., Yiu, L., & Filadoro, M. (2019). Tourism Development in Least Developed Countries: Challenges and Opportunities. In Sustainable Tourism: Breakthroughs in Research and Practice (pp. 94–120). IGI Global. https://doi.org/10.4018/978-1-5225-7504-7.ch006">[Crossref]

  64. Sang, K., Fontana, G. L., & Piovan, S. E. (2022). Assessing railway landscape by ahp process with gis: A study of the yunnan-vietnam railway. Remote Sensing14(3), 603. https://doi.org/10.3390/rs14030603">[Crossref]

  65. Sardar, S. (2021). Human resources development in tourism and the role of government: The case of Indian tourism. Journal of the Maharaja Sayajirao University of Baroda55(1), 40-50. https://www.researchgate.net/profile/Sanjib-Sardar-2/publication/350383345_Human_Resources_Development_in_Tourism_and_the_Role_of_Government_The_Case_of_Indian_Tourism/links/605cab4f299bf173676b9093/Human-Resources-Development-in-Tourism-and-the-Role-of-Government-The-Case-of-Indian-Tourism.pdf"> .

  66. Sarker, S. (2018). Resident’s Awareness Towards Sustainable Tourism for Ecotourism Destination in Sundarban Forest, Bangladesh. Pacific International Journal, 1(1), Article 1. https://doi.org/10.55014/pij.v1i1.38">[Crossref]

  67. Sharma, B. (2019). Economic impacts of rural tourism in Madhya Pradesh. International Journal of Advance Research, Ideas and Innovations in Technology, 5(1). 462-466.

  68. Smith, M. K. (2015). Issues in Cultural Tourism Studies. Routledge. https://doi.org/10.4324/9781315767697">[Crossref]

  69. Sofaer, H. R., Hoeting, J. A., & Jarnevich, C. S. (2019). The area under the precision-recall curve as a performance metric for rare binary events. Methods in Ecology and Evolution, 10(4), 565–577. https://doi.org/10.1111/2041-210X.13140">[Crossref]

  70. Soomro, B. N., Xiao, L., Huang, L., Soomro, S. H., & Molaei, M. (2016). Bilayer Elastic Net Regression Model for Supervised Spectral-Spatial Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9), 4102–4116. https://doi.org/10.1109/JSTARS.2016.2559524">[Crossref]

  71. Stępniak, M., Pritchard, J. P., Geurs, K. T., & Goliszek, S. (2019). The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland. Journal of Transport Geography, 75, 8–24. https://doi.org/10.1016/j.jtrangeo.2019.01.007">[Crossref]

  72. Suchting, R., Hébert, E. T., Ma, P., Kendzor, D. E., & Businelle, M. S. (2019). Using Elastic Net Penalized Cox Proportional Hazards Regression to Identify Predictors of Imminent Smoking Lapse. Nicotine & Tobacco Research, 21(2), 173–179. https://doi.org/10.1093/ntr/ntx201">[Crossref]

  73. Sugiharti, E., Putra, A. T., & Subhan. (2020). Facial recognition using two-dimensional principal component analysis and k-nearest neighbor: A case analysis of facial images. Journal of Physics: Conference Series, 1567(3), 032028. https://doi.org/10.1088/1742-6596/1567/3/032028">[Crossref]

  74. Telfer, D. J., & Sharpley, R. (2015). Tourism and development in the developing world. Routledge.

  75. The Market Research Division, Department of Tourism, (2003). Twenty Years Perspective Plan of Tourism for the State of Madhya Pradesh (Final Report, Vol-I). https://tourism.gov.in/sites/default/files/2020-04/MP.pdf">

  76. Tien Bui, D., Le, K.-T. T., Nguyen, V. C., Le, H. D., & Revhaug, I. (2016). Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression. Remote Sensing, 8(4), Article 4. https://doi.org/10.3390/rs8040347">[Crossref]

  77. Trukhachev, A. (2015). Methodology for Evaluating the Rural Tourism Potentials: A Tool to Ensure Sustainable Development of Rural Settlements. Sustainability, 7(3), Article 3. https://doi.org/10.3390/su7033052">[Crossref]

  78. Vairetti, C., Aránguiz, I., Maldonado, S., Karmy, J. P., & Leal, A. (2024). Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making. European Journal of Operational Research, 312(3), 1108–1118. https://doi.org/10.1016/j.ejor.2023.08.027">[Crossref]

  79. Vijay, R., Kushwaha, V. K., Chaudhury, A. S., Naik, K., Gupta, I., Kumar, R., & Wate, S. R. (2016). Assessment of tourism impact on land use/land cover and natural slope in Manali, India: a geospatial analysis. Environmental Earth Sciences75, 1-9. https://doi.org/10.1007/s12665-015-4858-9">[Crossref]

  80. Wang, D., Niu, Y., & Qian, J. (2018). Evolution and optimization of China’s urban tourism spatial structure: A highspeed rail perspective. Tourism Management, 64, 218–232. https://doi.org/10.1016/j.tourman.2017.08.010">[Crossref]

  81. Woźniak, E., Kulczyk, S., & Derek, M. (2018). From intrinsic to service potential: An approach to assess tourism landscape potential. Landscape and Urban Planning, 170, 209–220. https://doi.org/10.1016/j.landurbplan.2017.10.006">[Crossref]

  82. Yamin, M., Darmawan, A., & Rosyadi, S. (2021). Analysis of Indonesian tourism potentials through the sustainable tourism perspective in the new normal era. Jurnal Hubungan Internasional10(1), 44-58. http://dx.doi.org/10.18196/jhi.v10i1.10500">[Crossref]

  83. Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for kNN Classification. ACM Transactions on Intelligent Systems and Technology, 8(3), 43:1-43:19. https://doi.org/10.1145/2990508">[Crossref]

  84. Zhang, S., Zhang, Z., Yu, H., & Zhang, T. (2024). Assessment and Empirical Research on the Suitability of Eco-Tourism Development in Nature Reserves of China: A Multi-Type Comparative Perspective. Land13(4), 438. https://doi.org/10.3390/land13040438">[Crossref]

  85. Zhao, H., Wang, Y., Duan, J., Huang, C., Cao, D., Tong, Y., Xu, B., Bai, J., Tong, J., & Zhang, Q. (2020). Multivariate Time-Series Anomaly Detection via Graph Attention Network. 2020 IEEE International Conference on Data Mining (ICDM), 841–850. https://doi.org/10.1109/ICDM50108.2020.00093">[Crossref]

  86. Zhu, Q., Arabameri, A., Egbueri, J., & Agbasi, J. (2023). Integrated assessment of landslide susceptibility in the Kalaleh Basin, Golestan Province, Iran using novel SVR-GOA ensemble validated with BRT, ANN, and elastic net models. ResearchSquare. 1-27. https://doi.org/10.21203/rs.3.rs-2458371/v1">[Crossref]


Last update:

No citation recorded.

Last update: 2025-06-14 04:11:27

No citation recorded.