skip to main content

Land Cover Classification of Indonesian Archipelago Using Digital Spectroscopy to Support Spatial Planning in Indonesia

*Guntur Bagus Pamungkas orcid scopus publons  -  Study Program of Urban and Regional Planning, Faculty of Science and Technology, Universitas Terbuka, Indonesia
Muhammad Reffi Firmansyah  -  Study Program of Urban and Regional Planning, Faculty of Science and Technology, Universitas Terbuka, Indonesia
Ratna Sari  -  Study Program of Urban and Regional Planning, Faculty of Science and Technology, Universitas Terbuka, Indonesia
Anindya Putri Tamara  -  Study Program of Urban and Regional Planning, Faculty of Engineering, Universitas Semarang, Indonesia
Zainul Rahadian orcid scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Indonesia

Citation Format:
Abstract

In the context of urban and regional planning, this study aims to produce land classification products covering 230 pathrows throughout Indonesia, which can be an important tool in supporting planning and research projects. The research method used combines remote sensing in Geographic Information Systems (GIS) with the utilization of spectroscopy through QGIS software with dzetsaka plugins (semi-automatic classification tools). Land cover classifications that include water bodies, vegetation canopies, green open spaces, vacant land, settlements, and built-up areas, as well as additional classifications of cloud cover, provide a comprehensive overview of land conditions in Indonesia. The results of this classification are then verified through field observation surveys to ensure their accuracy and validity. The output of this research is a land classification product that can be used as an important tool in project-based learning and planning studio courses. With target users that include students, practitioners, and academics, this product can be an invaluable support in land cover analysis for various research and planning projects in various fields. In addition, this study offers a more potential alternative in using Landsat 8 OLI 2022 satellite imagery data from the USGS as a basis for a more in-depth and accurate analysis of land classification. Thus, the results of this study not only contribute to mapping and understanding land use in Indonesia but also provide useful tools in supporting natural resource planning and management as well as infrastructure development and sustainable development policies in Indonesia.

Note: This article has supplementary file(s).

Fulltext |  Plagiarism Check
Plagarism Check from Turnitin
Subject
Type Plagiarism Check
  Download (5MB)    Indexing metadata
Keywords: Spectroscopy; Remote Sensing; Project-Based Learning
Funding: LPPM of Universitas Terbuka under contract PN2022-00003845

Article Metrics:

  1. Abdelkarim, A. (2023). Monitoring and forecasting of land use/land cover (LULC) in Al-Hassa Oasis, Saudi Arabia-based
  2. on the integration of the Cellular Automata (CA) and the Cellular Automata-Markov Model (CA-Markov)
  3. Geology, Ecology, and Landscapes, 1-32
  4. Adnan, R. S. (2023). The Dynamic Role of Moslem in Building Indonesia as a Nation-State. Indonesian Journal of Religion
  5. and Society, 5(1), 58-69
  6. Ayerbe-López, J., & Perales-Palacios, F. J. (2023). Evaluating a Secondary Education Urban Ecology Project within the
  7. Framework of a Problem-Based Learning Methodology. Education Sciences, 13(9), 915
  8. Bongasie, A., Dhakal, T., Ayalew, A., Kim, T. S., Lee, Y., & Jang, G. S. (2024). Analysis of forest cover change and its driving
  9. factors in Senan district, Amhara Region, Ethiopia. Environmental Monitoring and Assessment, 196(4), 339
  10. Buchori, I. (2007). Ilmu Geomatika Perencanaan dalam Pendidikan Perencanaan Wilayah dan Kota untuk Menghadapi
  11. Tantangan Global Abstrak Pendahuluan
  12. Carramiñana, D., Bernardos, A. M., Besada, J. A., & Casar, J. R. (2024). Towards resilient cities: A hybrid simulation
  13. framework for risk mitigation through data-driven decision-making. Simulation Modelling Practice and Theory,
  14. , 102924
  15. Carrasco, L., O’Neil, A. W., Daniel Morton, R., & Rowland, C. S. (2019). Evaluating combinations of temporally aggregated
  16. Sentinel-1, Sentinel-2, and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sensing, 11(3)
  17. https://doi.org/10.3390/rs11030288
  18. Crawford, C. J., Roy, D. P., Arab, S., Barnes, C., Vermote, E., Hulley, G., & Zahn, S. (2023). The 50-year Landsat collection
  19. archive. Science of Remote Sensing, 8, 100103
  20. Delcourt, N., Silva, A. M. F. D., Rébufa, C., Foli, L., & Dupuy, N. (2023). Land Use Legacy Footprint In the Mediterranean
  21. Forest Soils: An Infrared Spectroscopy Approach. Geoderma: 430, 1-12
  22. Dong, C., Qi, S., Dai, Z., Qiu, X., & Luo, T. (2024). Research on accurate and effective identification of ecosystem surface
  23. based on the human footprint index. Ecological Indicators, 162, 112013
  24. Falcioni, R., Antunes, W. C., Demattê, J. A. M., & Nanni, M. R. (2023). Reflectance Spectroscopy for the Classification and
  25. Prediction of Pigments in Agronomic Crops. Plants, 12(12), 2347
  26. Ferdous, J., Ur Rahman, M. T., & Ghosh, S. K. (2019). Detection of Total Dissolved Solids from Landsat 8 OLI Image in
  27. Coastal Bangladesh. June, 35–44. https://doi.org/10.17501/2513258x.2019.3103
  28. Geospatial Information Agency (2011). Law No.4 of 2011 concerning Geospatial Information
  29. Hede, A. N. H., & Heriawan, S. M. N. (2020). Pemanfaatan Spektroskopi Reflektansi Dalam Penginderaan Jauh Sensor Optis
  30. Untuk Eksplorasi Mineral. PROSIDING TPT XXIX PERHAPI, 1-12
  31. Kalfas, D., Kalogiannidis, S., Chatzitheodoridis, F., & Toska, E. (2023). Urbanization and land use planning for achieving
  32. The Sustainable Development Goals (SDGs): A case study of Greece. Urban Science, 7(2), 43
  33. Karpukhina, E. A., Volkov, D. S., & Proskurnin, M. A. (2023). Quantification of lignosulfonates and humic components in
  34. mixtures by ATR FTIR spectroscopy. Agronomy, 13(4), 1141
  35. Kuttruff, J., Romanelli, M., Pedrueza-Villalmanzo, E., Allerbeck, J., Fregoni, J., Saavedra-Becerril, V., & Maccaferri, N
  36. (2023). The sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch
  37. nanoantennas. Nature Communications, 14(1), 3875
  38. Levi, N., Karnieli, A., & Kagan, T. P. (2022). Airborne Imaging Spectroscopy For Assessing Land-Use Effect On Soil Quality
  39. In Drylands. ISPRS Journal of Photogrammetry and Remote Sensing: 186, 34-54
  40. Li, F., Yigitcanlar, T., Nepal, M., Nguyen, K., & Dur, F. (2023). Machine learning and remote sensing integration for
  41. leveraging urban sustainability: A review and framework. Sustainable Cities and Society, 104653
  42. Manetu, W. M., Mironga, J. M., & Ondiko, J. H. (2023). Remote Sensing for Land Resources: A Review on Satellites, Data
  43. Availability and Applications
  44. Meidodga, I., Syahrin, A., Putra, R. T., Warfandu, F., & Bimasena, A. N. (2023). Pemanfaatan Data Geospasial dalam
  45. Mewujudkan Sistem Informasi Pertanahan Multiguna Bagi Multipihak. Widya Bhumi, 3(1), 62-80
  46. Mikheytsev, N. A., & Korzhimanov, A. V. (2023). Generation of synchronized X-rays and mid-infrared pulses by Doppler
  47. shifting of relativistically intense radiation from near-critical-density plasmas. Matter and Radiation at Extremes,
  48. (2)
  49. Nguyen, L. T. V., Cleveland, D., Nguyen, C. T. M., & Joyce, C. (2024). Problem-based learning and the integration of
  50. sustainable development goals. Journal of Work-Applied Management
  51. Nunn, P. D., Kumar, R., Barrowman, H. M., Chambers, L., Fifita, L., Gegeo, D., & Waiwai, M. (2024). Traditional
  52. knowledge for climate resilience in the Pacific Islands. Wiley Interdisciplinary Reviews: Climate Change, e882
  53. Padmini, Y., Rao, M. S., & Rao, G. R. (2023). Temporal Analysis of Land Use and Land Cover Changes in Vizianagaram
  54. District, Andhra Pradesh, India using Remote Sensing and GIS Techniques. Geoplanning, 10(1), 1–10
  55. https://doi.org/10.14710/GEOPLANNING.10.1.1-10
  56. Polyakova, A., Mukharamova, S., Yermolaev, O., & Shaykhutdinova, G. (2023). Automated recognition of tree species
  57. composition of forest communities using Sentinel-2 satellite data. Remote Sensing, 15(2), 329
  58. Prasad, R. D., Prasad, R. S., Prasad, R. B., Prasad, S. R., Singha, S. B., Singha, D., & Navathe, G. J. (2024). A review on
  59. modern characterization techniques for analysis of nanomaterials and biomaterials. ES Energy & Environment, 23,
  60. Simarmata, H. A., Rafliana, I., Herbeck, J., & Siriwardane-de Zoysa, R. (2023). Futuring ‘Nusantara’: Detangling Indonesia’s
  61. Modernist Archipelagic Imaginaries. In Ocean Governance: Knowledge Systems, Policy Foundations and
  62. Thematic Analyses (pp. 337-363). Cham: Springer International Publishing
  63. Sitinjak, K. P. H., Ibrahim, A. M., Putra, G. M., Mahlil, T., Januriyadi, N. F., & Rasyif, T. M. (2023). Probabilistic Analysis
  64. of the Tsunami Disaster on the Vulnerability Level of Buildings in Painan City, West Sumatra based on the
  65. Earthquake Ratio with the Logic Tree Method. In E3S Web of Conferences (Vol. 447, p. 01010). EDP Sciences
  66. Safithri, R., Syaiful, S., & Huda, N. (2021). Pengaruh penerapan problem based learning (PBL) dan project based learning
  67. (PJBL) terhadap kemampuan pemecahan masalah berdasarkan self efficacy siswa. Jurnal Cendekia: Jurnal Pendidikan
  68. Matematika, 5(1), 335-346
  69. Sejati, A. W., Buchori, I., & Rudiarto, I. (2019). The spatio-temporal trends of urban growth and surface urban heat islands
  70. over two decades in the Semarang Metropolitan Region. Sustainable Cities and Society, 46(July 2018), 101432
  71. https://doi.org/10.1016/j.scs.2019.101432
  72. Shaikh, M., & Birajdar, F. (2024). Advancements in Remote Sensing and GIS for Sustainable Groundwater Monitoring:
  73. Applications, Challenges, and Future Directions. International Journal of Research in Engineering, Science and
  74. Management, 7(3), 16-24
  75. Singh, B., Venkatramanan, V., & Deshmukh, B. (2022). Monitoring of land use land cover dynamics and prediction of urban
  76. growth using Land Change Modeler in Delhi and its environs, India. Environmental Science and Pollution
  77. Research, 29(47), 71534-71554
  78. Srivastava, A., & Maity, R. (2023). Assessing the potential of AI–ML in urban climate change adaptation and sustainable
  79. development. Sustainability, 15(23), 16461
  80. Stevanović, M., Pavlićević, P., Vujinović, N., & Radovanović, M. (2023). International relations challenges and sustainable
  81. development in developing countries after 2022: conceptualization of the risk assessment model. Energy, Sustainability and Society, 13(1), 48
  82. Swandi, A., Rahmadhanningsih, S., Viridi, S., Nurhayati, N., Putri, R. A., & Suryadi, A. (2021). Simulasi gerak translasi dan gerak melingkar menggunakan vba macro excel melalui project-based learning (PBL). Jurnal Pendidikan Fisika, 9(1), 33-42
  83. Tenorio, E. A., Montoya, P., Norden, N., Rodríguez‐Buriticá, S., Salgado‐Negret, B., & Gonzalez, M. A. (2023). Mountains
  84. exhibit a stronger latitudinal diversity gradient than lowland regions. Journal of Biogeography, 50(6), 1026-1036
  85. Vanderhoof, M. K., Alexander, L., Christensen, J., Solvik, K., Nieuwlandt, P., & Sagehorn, M. (2023). High-frequency time
  86. series comparison of Sentinel-1 and Sentinel-2 satellites for mapping open and vegetated water across the United
  87. States (2017–2021). Remote Sensing of Environment, 288, 113498
  88. Wang, L., Cheng, Y., Meftaul, I. M., Luo, F., Kabir, M. A., Doyle, R., & Naidu, R. (2024). Advancing soil health: challenges
  89. and opportunities in integrating digital imaging, spectroscopy, and machine learning for bioindicator analysis. Analytical Chemistry
  90. Wiatkowska, B., Słodczyk, J., & Stokowska, A. (2021). Spatial-temporal land use and land cover changes in urban areas
  91. using remote sensing images and GIS analysis: The case study of Opole, Poland. Geosciences, 11(8), 312
  92. Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., & Cook, B. D. (2022). Fifty
  93. years of Landsat science and impacts. Remote Sensing of Environment, 280, 113195
  94. Yu, D., & Fang, C. (2023). Urban remote sensing with spatial big data: A review and renewed perspective of urban studies
  95. in recent decades. Remote Sensing, 15(5), 1307
  96. Yuan, X., Tian, J., & Reinartz, P. (2023). Learning-Based Near-Infrared Band Simulation with Applications on Large-Scale
  97. Landcover Classification. Sensors, 23(9), 4179

Last update:

No citation recorded.

Last update: 2025-05-10 06:17:26

No citation recorded.