skip to main content

Tourism Potential Zone Mapping Using MCDM and Machine Learning Models in The State of Madhya Pradesh India

*Shrinwantu Raha orcid  -  Department of Geography, Bhairab Ganguly College, Belgharia, Kolkata, Pin Code:7,000,56, India
Sayan Deb orcid  -  Department of Geography, Bhairab Ganguly College, Belgharia, Pin Code: 7,000,56, India

Citation Format:
Abstract

The rich kaleidoscope of Madhya Pradesh's tourism attractions has long been acknowledged, but the delineation of Tourism Potential Zones (TPZs) remain enigmatic. This work aims to uncover these hidden jewels using a combination of Multi-Criteria Decision Making (MCDM) and machine learning techniques. TPZ was investigated using a variety of approaches, including Analytic Hierarchy Process (AHP), Linear Model (LM), Elastic Net Model (EN), and K-Nearest Neighbour (KNN). Further, by combining each the above models, a new ensemble model (AHP-LN-EN-KNN ensemble) was prepared. We followed the ROC-AUC curve and Root Mean Squared Error (RMSE) as evaluation measures. The findings reveal a landscape of promise, with each model shining with accuracy levels ranging from 81.4% to 90.6%. AUC scores ranged from 70% to 93%, with RMSE values ranging from 0.8 to 1.3. The ensemble model was embarked with a better accuracy (for training set 0.92 and for test set 0.88), AUC value (for training set 94.2% and for test set 87.2%) and lowest RMSE (i.e., 0.71), while AHP languishes at the rear, burdened by its elevated RMSE and diminished AUC. The northern, south-western, and middle regions emerge as high-potential areas, whilst the south-western edges languish with less promise. Meanwhile, the north-western expanse offers a scene of moderate potential. These findings not only inform, but also inspire, laying a foundation for Madhya Pradesh's long-term tourist growth. They encourage stakeholders to maintain and grow these designated zones, building a future in which the state's tourism thrives in tandem with its natural and cultural assets.

Fulltext
Keywords: Tourism Potential Zone (TPZ); K-Nearest Neighbour model; Analytic Hierarchy Process; Elastic Net Model; Linear Model.
Funding: NA

Article Metrics:

  1. Abbruzzo, A., Brida, J. G., & Scuderi, R. (2014). Scad-elastic net and the estimation of individual tourism expenditure determinants. Decision Support Systems, 66, 52–60. https://doi.org/10.1016/j.dss.2014.06.003
  2. Aburomman, A. A., & Ibne Reaz, M. B. (2016). A novel SVM-kNN-PSO ensemble method for intrusion detection system. Applied Soft Computing, 38, 360–372. https://doi.org/10.1016/j.asoc.2015.10.011
  3. Acharya, A., Mondal, B. K., Bhadra, T., Abdelrahman, K., Mishra, P. K., Tiwari, A., & Das, R. (2022). Geospatial Analysis of Geo-Ecotourism Site Suitability Using AHP and GIS for Sustainable and Resilient Tourism Planning in West Bengal, India. Sustainability, 14(4), Article 4. https://doi.org/10.3390/su14042422
  4. Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Applied Computing and Informatics, 12(1), 90–108. https://doi.org/10.1016/j.aci.2014.10.001
  5. Afan, H. A., Ibrahem Ahmed Osman, A., Essam, Y., Ahmed, A. N., Huang, Y. F., Kisi, O., Sherif, M., Sefelnasr, A., Chau, K., & El-Shafie, A. (2021). Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques. Engineering Applications of Computational Fluid Mechanics, 15(1), 1420–1439. https://doi.org/10.1080/19942060.2021.1974093
  6. Ahmad, S. Z., & Pandey, D. D. N. (2016). DEVELOPMENT AND ASSESSMENT OF ECOTOURISM IN PANNA NATIONAL PARK (MADHYA PRADESH), INDIA. 2395
  7. Aijaz, D. A. (2022). Tourism and resource development: A study of Madhya Pradesh. International Journal of Economic Perspectives, 16(9), Article 9
  8. Ala’raj, M., & Abbod, M. F. (2016). A new hybrid ensemble credit scoring model based on classifiers consensus system approach. Expert Systems with Applications, 64, 36–55. https://doi.org/10.1016/j.eswa.2016.07.017
  9. Al-Areeq, A. M., Abba, S. I., Halder, B., Ahmadianfar, I., Heddam, S., Demir, V., Kilinc, H. C., Farooque, A. A., Tan, M. L., & Yaseen, Z. M. (2023). Flood Subsidence Susceptibility Mapping using Elastic-net Classifier: New Approach. Water Resources Management, 37(13), 4985–5006. https://doi.org/10.1007/s11269-023-03591-0
  10. Alfons, A., Croux, C., & Gelper, S. (2013). Sparse Least Trimmed Squares Regression for Analyzing High-Dimensional Large Data Sets. The Annals of Applied Statistics, 7(1), 226–248
  11. Ali, N., Neagu, D., & Trundle, P. (2019). Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets. SN Applied Sciences, 1(12), 1559. https://doi.org/10.1007/s42452-019-1356-9
  12. Atun, R. A., Nafa, H., & Türker, Ö. O. (2019). Envisaging sustainable rural development through ‘context-dependent tourism’: Case of northern Cyprus. Environment, Development and Sustainability, 21(4), 1715–1744. https://doi.org/10.1007/s10668-018-0100-8
  13. Ayesha, S., Hanif, M. K., & Talib, R. (2020). Overview and comparative study of dimensionality reduction techniques for high dimensional data. Information Fusion, 59, 44–58. https://doi.org/10.1016/j.inffus.2020.01.005
  14. Babu, P. K. V., & Gade, J. (2014). Tourism in India. Zenon Academic Publishing
  15. Baggio, R. (2014). Complex tourism systems: A visibility graph approach. Kybernetes, 43(3/4), 445–461. https://doi.org/10.1108/K-12-2013-0266
  16. Banerjee, A. (2014). Human Resource Development in Tourism Industry in India: A Case Study of Jet Airways India Ltd. 1
  17. Banik, S., & Mukhopadhyay, M. (2022). Model-based strategic planning for the development of community based tourism: A case study of Ayodhya Hills in West Bengal, India. GeoJournal, 87(2), 1349–1365. https://doi.org/10.1007/s10708-020-10314-0
  18. Bansal, S., Garg, I., & Sharma, G. D. (2019). Social Entrepreneurship as a Path for Social Change and Driver of Sustainable Development: A Systematic Review and Research Agenda. Sustainability, 11(4), Article 4. https://doi.org/10.3390/su11041091
  19. Blatman, G., Delage, T., Iooss, B., & Pérot, N. (2017). Probabilistic risk bounds for the characterization of radiological contamination (arXiv:1701.02373). arXiv. https://doi.org/10.48550/arXiv.1701.02373
  20. Boateng, E. Y., Otoo, J., & Abaye, D. A. (2020). Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review. Journal of Data Analysis and Information Processing, 8(4), Article 4. https://doi.org/10.4236/jdaip.2020.84020
  21. Bouchon, F., & Rauscher, M. (2019). Cities and tourism, a love and hate story; towards a conceptual framework for urban overtourism management. International Journal of Tourism Cities, 5(4), 598–619. https://doi.org/10.1108/IJTC-06-2019-0080
  22. Brida, J. G., Lanzilotta, B., Moreno, L., & Santiñaque, F. (2018). A non-linear approximation to the distribution of total expenditure distribution of cruise tourists in Uruguay. Tourism Management, 69, 62–68. https://doi.org/10.1016/j.tourman.2018.05.006
  23. Brouder, P., Clavé, S. A., Gill, A., & Ioannides, D. (2016). Tourism Destination Evolution. Routledge
  24. Carmona, R. (2014). Multivariate Time Series, Linear Systems and Kalman Filtering. In R. Carmona (Ed.), Statistical Analysis of Financial Data in R (pp. 423–472). Springer. https://doi.org/10.1007/978-1-4614-8788-3_7
  25. Chandravanshi, J., & Jain, N. (2023). Indigenous Art of Bastar District of Chhattisgarh: A Study of the Government Initiations for Artisans. Splint International Journal Of Professionals, 10(1), 25–34. https://doi.org/10.5958/2583-3561.2023.00002.4
  26. Chaudhary, S., Kumar, A., Pramanik, M., & Negi, M. S. (2022). Land evaluation and sustainable development of ecotourism in the Garhwal Himalayan region using geospatial technology and analytical hierarchy process. Environment, Development and Sustainability, 24(2), 2225–2266. https://doi.org/10.1007/s10668-021-01528-4
  27. Chavan, G., & Momin, B. (2017). An integrated approach for weather forecasting over Internet of Things: A brief review. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 83–88. https://doi.org/10.1109/I-SMAC.2017.8058291
  28. Chen, H.-L., Yang, B., Wang, G., Liu, J., Xu, X., Wang, S.-J., & Liu, D.-Y. (2011). A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method. Knowledge-Based Systems, 24(8), 1348–1359. https://doi.org/10.1016/j.knosys.2011.06.008
  29. Chowdhuri, I., Pal, S. C., Arabameri, A., Ngo, P. T. T., Chakrabortty, R., Malik, S., Das, B., & Roy, P. (2020). Ensemble approach to develop landslide susceptibility map in landslide dominated Sikkim Himalayan region, India. Environmental Earth Sciences, 79(20), 476. https://doi.org/10.1007/s12665-020-09227-5
  30. Christie, I., Christie, I. T., Fernandes, E., Messerli, H., & Twining-Ward, L. (2014). Tourism in Africa: Harnessing Tourism for Growth and Improved Livelihoods. World Bank Publications
  31. Collier, Z. A., & Lambert, J. H. (2019). Principles and methods of model validation for model risk reduction. Environment Systems and Decisions, 39(2), 146–153. https://doi.org/10.1007/s10669-019-09723-5
  32. Dedík, M., Šperka, A., Čamaj, J., & Zábovská, K. (2022). Traffic Potential Evaluation of the Regions in the Context of Rail Passenger Transport – A Case for Slovak Republic. Promet - Traffic&Transportation, 34(2), 309–321. https://doi.org/10.7307/ptt.v34i2.3880
  33. Deshpande, A., Achille, A., Ravichandran, A., Li, H., Zancato, L., Fowlkes, C., Bhotika, R., Soatto, S., & Perona, P. (2021). A linearized framework and a new benchmark for model selection for fine-tuning (arXiv:2102.00084). arXiv. https://doi.org/10.48550/arXiv.2102.00084
  34. Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu, S., Chen, Y., Chan, C.-M., Chen, W., Yi, J., Zhao, W., Wang, X., Liu, Z., Zheng, H.-T., Chen, J., Liu, Y., Tang, J., Li, J., & Sun, M. (2023). Parameter-efficient fine-tuning of large-scale pre-trained language models. Nature Machine Intelligence, 5(3), Article 3. https://doi.org/10.1038/s42256-023-00626-4
  35. Dong, J.-J., Tung, Y.-H., Chen, C.-C., Liao, J.-J., & Pan, Y.-W. (2011). Logistic regression model for predicting the failure probability of a landslide dam. Engineering Geology, 117(1), 52–61. https://doi.org/10.1016/j.enggeo.2010.10.004
  36. Elmahdy, S. I., Marghany, M. M., & Mohamed, M. M. (2016). Application of a weighted spatial probability model in GIS to analyse landslides in Penang Island, Malaysia. Geomatics, Natural Hazards and Risk, 7(1), 345–359. https://doi.org/10.1080/19475705.2014.904825
  37. Field, A. P., & Wilcox, R. R. (2017). Robust statistical methods: A primer for clinical psychology and experimental psychopathology researchers. Behaviour Research and Therapy, 98, 19–38. https://doi.org/10.1016/j.brat.2017.05.013
  38. Garau, C. (2015). Perspectives on Cultural and Sustainable Rural Tourism in a Smart Region: The Case Study of Marmilla in Sardinia (Italy). Sustainability, 7(6), Article 6. https://doi.org/10.3390/su7066412
  39. Gohil, D. N. (2015). Role and Impact of Social Media in Tourism: A Case Study on the Initiatives of Madhya Pradesh State Tourism. Social Sciences, 5(4)
  40. Goossens, A. J. M., & Basten, R. J. I. (2015). Exploring maintenance policy selection using the Analytic Hierarchy Process; An application for naval ships. Reliability Engineering & System Safety, 142, 31–41. https://doi.org/10.1016/j.ress.2015.04.014
  41. Greenwell, B., M., & Boehmke, B., C. (2020). Variable Importance Plots—An Introduction to the vip Package. The R Journal, 12(1), 343. https://doi.org/10.32614/RJ-2020-013
  42. Gürer, A., Gürer, Ö. F., & Sangu, E. (2019). Compound geotourism and mine tourism potentiality of Soma region, Turkey. Arabian Journal of Geosciences, 12(23), 734. https://doi.org/10.1007/s12517-019-4927-6
  43. Harianto, S. P., Masruri, N. W., Winarno, G. D., Tsani, M. K., & Santoso, T. (2020). Development strategy for ecotourism management based on feasibility analysis of tourist attraction objects and perception of visitors and local communities. Biodiversitas Journal of Biological Diversity, 21(2), Article 2. https://doi.org/10.13057/biodiv/d210235
  44. Heinze, G., Wallisch, C., & Dunkler, D. (2018). Variable selection – A review and recommendations for the practicing statistician. Biometrical Journal, 60(3), 431–449. https://doi.org/10.1002/bimj.201700067
  45. Hoang, H. T. T., Truong, Q. H., Nguyen, A. T., & Hens, L. (2018). Multicriteria Evaluation of Tourism Potential in the Central Highlands of Vietnam: Combining Geographic Information System (GIS), Analytic Hierarchy Process (AHP) and Principal Component Analysis (PCA). Sustainability, 10(9), Article 9. https://doi.org/10.3390/su10093097
  46. Huang, P., Hou, M., Sun, T., Xu, H., Ma, C., & Zhou, A. (2024). Sustainable groundwater management in coastal cities: Insights from groundwater potential and vulnerability using ensemble learning and knowledge-driven models. Journal of Cleaner Production, 442, 141152. https://doi.org/10.1016/j.jclepro.2024.141152
  47. Iacobucci, D., Posavac, S. S., Kardes, F. R., Schneider, M. J., & Popovich, D. L. (2015). Toward a more nuanced understanding of the statistical properties of a median split. Journal of Consumer Psychology, 25(4), 652–665. https://doi.org/10.1016/j.jcps.2014.12.002
  48. Jafarzadeh, A., Pourreza-Bilondi, M., Akbarpour, A., Khashei-Siuki, A., & Samadi, S. (2021). Application of multi-model ensemble averaging techniques for groundwater simulation: Synthetic and real-world case studies. Journal of Hydroinformatics, 23(6), 1271–1289. https://doi.org/10.2166/hydro.2021.058
  49. Jiao, J., Wang, J., Zhang, F., Jin, F., & Liu, W. (2020). Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China. Transport Policy, 91, 1–15. https://doi.org/10.1016/j.tranpol.2020.03.001
  50. JOVANOVIĆ, S., & ILIĆ, I. (2016). INFRASTRUCTURE AS IMPORTANT DETERMINANT OF TOURISM DEVELOPMENT IN THE COUNTRIES OF SOUTHEAST EUROPE | JOVANOVIĆ | Ecoforum Journal. http://www.ecoforumjournal.ro/index.php/eco/article/view/329
  51. Jungwirth, M., Muhar, S., & Schmutz, S. (2002). Re-establishing and assessing ecological integrity in riverine landscapes. Freshwater Biology, 47(4), 867–887. https://doi.org/10.1046/j.1365-2427.2002.00914.x
  52. Kala, D., & Bagri, S. C. (n.d.). Barriers to local community participation in tourism development: Evidence from mountainous state Uttarakhand, India. 66(3)
  53. Kastenholz, E., Eusébio, C., Figueiredo, E., & Lima, J. (2012). Accessibility as Competitive Advantage of a Tourism Destination: The Case of Lousã. In K. F. Hyde, C. Ryan, & A. G. Woodside (Eds.), Field Guide to Case Study Research in Tourism, Hospitality and Leisure (Vol. 6, pp. 369–385). Emerald Group Publishing Limited. https://doi.org/10.1108/S1871-3173(2012)0000006023
  54. Kennedy, L., Robin, K., & Zamuner, D. (2013). Comparing State-level policy responses to economic reforms in India. Revue de La Régulation. Capitalisme, Institutions, Pouvoirs, 13, Article 13. https://doi.org/10.4000/regulation.10247
  55. Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2017). A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Computers & Industrial Engineering, 112, 156–174. https://doi.org/10.1016/j.cie.2017.08.017
  56. Khan, M., Nassar, R.-U.-D., Khan, A. U., Houda, M., El Hachem, C., Rasheed, M., & Anwar, W. (2023). Optimizing durability assessment: Machine learning models for depth of wear of environmentally-friendly concrete. Results in Engineering, 20, 101625. https://doi.org/10.1016/j.rineng.2023.101625
  57. Kishnani, N. (2022). JOT june 2019-ecotourism
  58. Kumar, P., Madaan, S., & Bhargava, G. (2023). An Insight About Bell Metal Craft—Scopes of Improvement and Promotion. In A. Chakrabarti & V. Singh (Eds.), Design in the Era of Industry 4.0, Volume 2 (pp. 965–975). Springer Nature. https://doi.org/10.1007/978-981-99-0264-4_79
  59. Lanfredi, M., Coppola, R., D’Emilio, M., Imbrenda, V., Macchiato, M., & Simoniello, T. (2015). A geostatistics-assisted approach to the deterministic approximation of climate data. Environmental Modelling & Software, 66, 69–77. https://doi.org/10.1016/j.envsoft.2014.12.009
  60. Li, Q., Xie, B., You, J., Bian, W., & Tao, D. (2016). Correlated Logistic Model With Elastic Net Regularization for Multilabel Image Classification. IEEE Transactions on Image Processing, 25(8), 3801–3813. https://doi.org/10.1109/TIP.2016.2577382
  61. Li, Y., & Guo, L. (2007). An active learning based TCM-KNN algorithm for supervised network intrusion detection. Computers & Security, 26(7), 459–467. https://doi.org/10.1016/j.cose.2007.10.002
  62. Maharana, K., Mondal, S., & Nemade, B. (2022). A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1), 91–99. https://doi.org/10.1016/j.gltp.2022.04.020
  63. Mamun, A. A., & Mitra, S. (2012). A Methodology for Assessing Tourism Potential: Case Study Murshidabad District, West Bengal, India. 2(9)
  64. Mathivanan, N. M. N., Md.Ghani, N. A., & Janor, R. M. (2018). Improving Classification Accuracy Using Clustering Technique. Bulletin of Electrical Engineering and Informatics, 7(3), Article 3. https://doi.org/10.11591/eei.v7i3.1272
  65. Metilelu, O. O., Adeniyi, M. O., & Ekum, M. I. (2022). Modelling the Dynamic Effect of Environmental Pollution on Coastal Tourism. Scientific African, 17, e01364. https://doi.org/10.1016/j.sciaf.2022.e01364
  66. Mir, A., & Nasiri, J. A. (2018). KNN-based least squares twin support vector machine for pattern classification. Applied Intelligence, 48(12), 4551–4564. https://doi.org/10.1007/s10489-018-1225-z
  67. Mirsanjari, M. M., & Mirsanjari, M. O. (2012). Study of Strategic Eco-Tourism Potential Based on Sustainable Development and Management (SSRN Scholarly Paper 2054154). https://papers.ssrn.com/abstract=2054154
  68. Mitra, R., Saha, P., & Das, J. (2022). Assessment of the performance of GIS-based analytical hierarchical process (AHP) approach for flood modelling in Uttar Dinajpur district of West Bengal, India. Geomatics, Natural Hazards and Risk, 13(1), 2183–2226. https://doi.org/10.1080/19475705.2022.2112094
  69. Mittal, K., Aggarwal, G., & Mahajan, P. (2019). Performance study of K-nearest neighbor classifier and K-means clustering for predicting the diagnostic accuracy. International Journal of Information Technology, 11(3), 535–540. https://doi.org/10.1007/s41870-018-0233-x
  70. Mohanapriya, M., & Lekha, J. (2018). Comparative study between decision tree and knn of data mining classification technique. Journal of Physics: Conference Series, 1142(1), 012011. https://doi.org/10.1088/1742-6596/1142/1/012011
  71. Mohaya, J. A., & Elassal, M. (2021). Assessment of Eco-tourism Potentials to Enhance Tourist Attractiveness in Asir Mountains, Saudi Arabia. Annals of the Romanian Society for Cell Biology, 25(6), Article 6
  72. Morris, H., Plavcová, L., Cvecko, P., Fichtler, E., Gillingham, M. A. F., Martínez-Cabrera, H. I., McGlinn, D. J., Wheeler, E., Zheng, J., Ziemińska, K., & Jansen, S. (2016). A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 209(4), 1553–1565. https://doi.org/10.1111/nph.13737
  73. Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2015). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 44. https://doi.org/10.1007/s10661-015-5049-6
  74. Natalia, P., Clara, R. A., Simon, D., Noelia, G., & Barbara, A. (2019). Critical elements in accessible tourism for destination competitiveness and comparison: Principal component analysis from Oceania and South America. Tourism Management, 75, 169–185. https://doi.org/10.1016/j.tourman.2019.04.012
  75. Navale, S., & Bhagat, V. (2021). Detection and Delineation of Potential Areas for Tourism Activities in Coastal Zone of Ratnagiri District, Maharashtra (India). Journal of Geographical Studies, 5, 79–113. https://doi.org/10.21523/gcj5.21050203
  76. Nugrahaeni, R. A., & Mutijarsa, K. (2016). Comparative analysis of machine learning KNN, SVM, and random forests algorithm for facial expression classification. 2016 International Seminar on Application for Technology of Information and Communication (ISemantic), 163–168. https://doi.org/10.1109/ISEMANTIC.2016.7873831
  77. Okfalisa, Gazalba, I., Mustakim, & Reza, N. G. I. (2017). Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 294–298. https://doi.org/10.1109/ICITISEE.2017.8285514
  78. Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J. M. C. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management, 275, 117–129. https://doi.org/10.1016/j.foreco.2012.03.003
  79. Ovreiu, A.-B., Bărsoianu, I.-A., Comănescu, L., & Nedelea, A. (2018). ASSESSING THE ACCESSIBILITY OF RELIEF FOR TOURISM ACTIVITIES. CASE STUDY -COZIA MASSIF (SOUTHERN CARPATHIANS, ROMANIA). https://doi.org/10.30892/gtg.22220-307
  80. Pandey, D., Mishra, S., & Shukla, S. (2014). Tourism and resource development: A case study of Madhya Pradesh. International Journal of Biological Research, 2(2), 149. https://doi.org/10.14419/ijbr.v2i2.2440
  81. Pandey, M. S., & Chandniwala, D. V. J. (2019). Impact of Tourism on Indian Economy after Liberalization: Madhya Pradesh. Think India Journal, 22(10), Article 10
  82. Pham, L. L., Watford, S. M., Pradeep, P., Martin, M. T., Thomas, R. S., Judson, R. S., Setzer, R. W., & Paul Friedman, K. (2020). Variability in in vivo studies: Defining the upper limit of performance for predictions of systemic effect levels. Computational Toxicology, 15, 100126. https://doi.org/10.1016/j.comtox.2020.100126
  83. Piro, N. S., Mohammed, A. S., Hamad, S. M., Kurda, R., & Qader, B. S. (2023). Multifunctional computational models to predict the long-term compressive strength of concrete incorporated with waste steel slag. Structural Concrete, 24(2), 2093–2112. https://doi.org/10.1002/suco.202200023
  84. Pirselimoğlu Batman, Z., & Demirel, Ö. (2015). Ecology-based tourism potential with regard to alternative tourism activities in Altındere Valley (Trabzon – Maçka). International Journal of Sustainable Development & World Ecology, 22(1), 39–49. https://doi.org/10.1080/13504509.2014.948098
  85. Pouya, S., & Başkaya, F. A. T. (2018). Residents’ Perceptions of Riverine Landscape Changes; Case Study of Beykoz Stream/ Istanbul. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 19(2), Article 2. https://doi.org/10.18038/aubtda.336959
  86. Raha, S., & Gayen, S. K. (2022a). Application of Analytic Hierarchy Process and weighted sum techniques for green tourism potential mapping in the Gangetic West Bengal, India. GeoJournal. https://doi.org/10.1007/s10708-022-10619-2
  87. Raha, S., & Gayen, S. K. (2022b). Tourism Potentiality Zone Mapping by Using the AHP Technique: A Study on Bankura District, West Bengal, India. Journal of Geographical Studies, 6(2), 58–85. https://doi.org/10.21523/gcj5.22060201
  88. Raha, S., Mondal, M., & Gayen, S. K. (2021). Ecotourism potential zone mapping by using analytic hierarchy process (AHP) and weighted linear algorithm: A study on West Bengal, India. Journal of Geographical studies, 5(2), 44-64
  89. Rahman, M. M. (2021). Inbound tourism in Bangladesh: The trend of competitiveness. Bangladesh Journal of Public Administration, 29(2), Article 2. https://doi.org/10.36609/bjpa.v29i2.227
  90. Raina, A. K., & Agarwal, D. S. K. (2004). The Essence of Tourism Development: Dynamics, Philosophy, and Strategies. Sarup & Sons
  91. RAKHRA, D. I. K. (2020). MARKETING INNOVATIONS IN TOURISM INDUSTRY: AN EMPIRICAL STUDY OF MADHYA PRADESH. RED’SHINE Publication. Pvt. Ltd
  92. Ramírez-Guerrero, G., García-Onetti, J., Arcila-Garrido, M., & Chica-Ruiz, J. A. (2021). A Tourism Potential Index for Cultural Heritage Management through the Ecosystem Services Approach. Sustainability, 13(11), Article 11. https://doi.org/10.3390/su13116415
  93. Ristić, D., Vukoičić, D., & Milinčić, M. (2019). Tourism and sustainable development of rural settlements in protected areas—Example NP Кopaonik (Serbia). Land Use Policy, 89, 104231. https://doi.org/10.1016/j.landusepol.2019.104231
  94. Roumiani, A., Basir Arian, A., Mahmoodi, H., & Shayan, H. (2023). Estimation and prediction of ecological footprint using tourism development indices top tourist destination countries. Sustainable Development, 31(2), 1084–1100. https://doi.org/10.1002/sd.2442
  95. Ruda, A. (2016). EXPLORING TOURISM POSSIBILITIES USING GIS-BASED SPATIAL ASSOCIATION METHODS. Geographia Technica, 11(2), 87–101. https://doi.org/10.21163/GT_2016.112.09
  96. Saaty, T. L. (1980). The Analytic Hierarchy Process. Mcgraw Hill, New York, 70, 34
  97. Saaty, T. L. (2001). Fundamentals of the Analytic Hierarchy Process. In D. L. Schmoldt, J. Kangas, G. A. Mendoza, & M. Pesonen (Eds.), The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making (pp. 15–35). Springer Netherlands. https://doi.org/10.1007/978-94-015-9799-9_2
  98. Saaty, T. L. (2016). The Analytic Hierarchy and Analytic Network Processes for the Measurement of Intangible Criteria and for Decision-Making. In S. Greco, M. Ehrgott, & J. R. Figueira (Eds.), Multiple Criteria Decision Analysis: State of the Art Surveys (pp. 363–419). Springer. https://doi.org/10.1007/978-1-4939-3094-4_10
  99. Saha, K., Kalra, R., & Khare, R. (2022). A geospatial approach to enhance religious tourism in India—A case of Ujjain city, Madhya Pradesh. GeoJournal, 87(3), 1793–1810. https://doi.org/10.1007/s10708-020-10334-w
  100. Sahabi Abed, S., & Matzarakis, A. (2018). Quantification of the Tourism Climate of Algeria Based on the Climate-Tourism-Information-Scheme. Atmosphere, 9(7), Article 7. https://doi.org/10.3390/atmos9070250
  101. Sahani, N. (2019). Assessment of ecotourism potentiality in GHNPCA, Himachal Pradesh, India, using remote sensing, GIS and MCDA techniques. Asia-Pacific Journal of Regional Science, 3(2), 623–646. https://doi.org/10.1007/s41685-019-00116-9
  102. Sahani, N. (2020). Application of analytical hierarchy process and GIS for ecotourism potentiality mapping in Kullu District, Himachal Pradesh, India. Environment, Development and Sustainability, 22(7), 6187–6211. https://doi.org/10.1007/s10668-019-00470-w
  103. Saner, R., Yiu, L., & Filadoro, M. (2019). Tourism Development in Least Developed Countries: Challenges and Opportunities. In Sustainable Tourism: Breakthroughs in Research and Practice (pp. 94–120). IGI Global. https://doi.org/10.4018/978-1-5225-7504-7.ch006
  104. Sardar, S. (2021). Human Resources Development in Tourism and the Role of Government: The Case of Indian Tourism
  105. Sarker, S. (2018). Resident’s Awareness Towards Sustainable Tourism for Ecotourism Destination in Sundarban Forest, Bangladesh. Pacific International Journal, 1(1), Article 1. https://doi.org/10.55014/pij.v1i1.38
  106. Sato, Y., & Tan, K. H. (2023). Inconsistency indices in pairwise comparisons: An improvement of the Consistency Index. Annals of Operations Research, 326(2), 809–830. https://doi.org/10.1007/s10479-021-04431-3
  107. Sheather, S. (2009). A Modern Approach to Regression with R. Springer Science & Business Media
  108. Sill, M., Hielscher, T., Becker, N., & Zucknick, M. (2015). c060: Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models. Journal of Statistical Software, 62, 1–22. https://doi.org/10.18637/jss.v062.i05
  109. Singh, S. P., & Shukla, A. (2010). Socio-Economic Outlook of the Bundelkhand: Problems and Prospects. The Indian Journal of Political Science, 71(3), 947–967
  110. Skibiński, J., Kultys, K., Baran-Zgłobicka, B., & Zgłobicki, W. (2021). Geoparks in SE Poland as Areas of Tourism Development: Current State and Future Prospects. Resources, 10(11), Article 11. https://doi.org/10.3390/resources10110113
  111. Smith, M. K. (2015). Issues in Cultural Tourism Studies. Routledge
  112. Sofaer, H. R., Hoeting, J. A., & Jarnevich, C. S. (2019). The area under the precision-recall curve as a performance metric for rare binary events. Methods in Ecology and Evolution, 10(4), 565–577. https://doi.org/10.1111/2041-210X.13140
  113. Soomro, B. N., Xiao, L., Huang, L., Soomro, S. H., & Molaei, M. (2016). Bilayer Elastic Net Regression Model for Supervised Spectral-Spatial Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9), 4102–4116. https://doi.org/10.1109/JSTARS.2016.2559524
  114. Soper, D. S. (2021). Greed Is Good: Rapid Hyperparameter Optimization and Model Selection Using Greedy k-Fold Cross Validation. Electronics, 10(16), Article 16. https://doi.org/10.3390/electronics10161973
  115. S.Raikwal, J., & Saxena, K. (2012). Performance Evaluation of SVM and K-Nearest Neighbor Algorithm over Medical Data set. International Journal of Computer Applications, 50(14), 35–39. https://doi.org/10.5120/7842-1055
  116. Stępniak, M., Pritchard, J. P., Geurs, K. T., & Goliszek, S. (2019). The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland. Journal of Transport Geography, 75, 8–24. https://doi.org/10.1016/j.jtrangeo.2019.01.007
  117. Suchting, R., Hébert, E. T., Ma, P., Kendzor, D. E., & Businelle, M. S. (2019). Using Elastic Net Penalized Cox Proportional Hazards Regression to Identify Predictors of Imminent Smoking Lapse. Nicotine & Tobacco Research, 21(2), 173–179. https://doi.org/10.1093/ntr/ntx201
  118. Sugiharti, E., Putra, A. T., & Subhan. (2020). Facial recognition using two-dimensional principal component analysis and k-nearest neighbor: A case analysis of facial images. Journal of Physics: Conference Series, 1567(3), 032028. https://doi.org/10.1088/1742-6596/1567/3/032028
  119. Tamir, M. (2015). Challenges and Opportunities of Community based Tourism Development in Awi Zone: A Case Study in Guagusa and Banja Woredas, Ethiopia
  120. Taunk, K., De, S., Verma, S., & Swetapadma, A. (2019). A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. 2019 International Conference on Intelligent Computing and Control Systems (ICCS), 1255–1260. https://doi.org/10.1109/ICCS45141.2019.9065747
  121. Telfer, D. J., & Sharpley, R. (2015). Tourism and Development in the Developing World. Routledge
  122. Tien Bui, D., Le, K.-T. T., Nguyen, V. C., Le, H. D., & Revhaug, I. (2016). Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression. Remote Sensing, 8(4), Article 4. https://doi.org/10.3390/rs8040347
  123. Tripathy, A. (2021). Role of Tourism in Economic Development: A Case Study of Koraput District of Odisha of the Creative Commons Attribution License (CC BY 4.0)
  124. Trukhachev, A. (2015). Methodology for Evaluating the Rural Tourism Potentials: A Tool to Ensure Sustainable Development of Rural Settlements. Sustainability, 7(3), Article 3. https://doi.org/10.3390/su7033052
  125. ur Rehman, M. H., Liew, C. S., Abbas, A., Jayaraman, P. P., Wah, T. Y., & Khan, S. U. (2016). Big Data Reduction Methods: A Survey. Data Science and Engineering, 1(4), 265–284. https://doi.org/10.1007/s41019-016-0022-0
  126. Vairetti, C., Aránguiz, I., Maldonado, S., Karmy, J. P., & Leal, A. (2024). Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making. European Journal of Operational Research, 312(3), 1108–1118. https://doi.org/10.1016/j.ejor.2023.08.027
  127. Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., & Vandekerckhove, L. (2006). Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium). Geomorphology, 76(3), 392–410. https://doi.org/10.1016/j.geomorph.2005.12.003
  128. Vitola, J., Pozo, F., Tibaduiza, D. A., & Anaya, M. (2017). A Sensor Data Fusion System Based on k-Nearest Neighbor Pattern Classification for Structural Health Monitoring Applications. Sensors, 17(2), Article 2. https://doi.org/10.3390/s17020417
  129. Wang, D., Niu, Y., & Qian, J. (2018). Evolution and optimization of China’s urban tourism spatial structure: A high speed rail perspective. Tourism Management, 64, 218–232. https://doi.org/10.1016/j.tourman.2017.08.010
  130. Wang, N., Zeng, N. N., & Zhu, W. (2010). Sensitivity, Specificity, Accuracy, Associated Confidence Interval And ROC Analysis With Practical SAS Implementations
  131. Wang, W., & Lu, Y. (2018). Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conference Series: Materials Science and Engineering, 324(1), 012049. https://doi.org/10.1088/1757-899X/324/1/012049
  132. Webb, T., Lee, M., Schwartz, Z., & Vouk, I. (2023). Beyond accuracy: The advantages of the k-nearest neighbor algorithm for hotel revenue management forecasting. Tourism Economics, 13548166231201199. https://doi.org/10.1177/13548166231201199
  133. Weiss, D. J., Nelson, A., Gibson, H. S., Temperley, W., Peedell, S., Lieber, A., Hancher, M., Poyart, E., Belchior, S., Fullman, N., Mappin, B., Dalrymple, U., Rozier, J., Lucas, T. C. D., Howes, R. E., Tusting, L. S., Kang, S. Y., Cameron, E., Bisanzio, D., … Gething, P. W. (2018). A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature, 553(7688), Article 7688. https://doi.org/10.1038/nature25181
  134. Woźniak, E., Kulczyk, S., & Derek, M. (2018). From intrinsic to service potential: An approach to assess tourism landscape potential. Landscape and Urban Planning, 170, 209–220. https://doi.org/10.1016/j.landurbplan.2017.10.006
  135. Xing, W., & Bei, Y. (2020). Medical Health Big Data Classification Based on KNN Classification Algorithm. IEEE Access, 8, 28808–28819. https://doi.org/10.1109/ACCESS.2019.2955754
  136. Yamin, M., Darmawan, A., & Rosyadi, S. (2021). Analysis of Indonesian Tourism Potential Through the Sustainable Tourism Perspective in the New Normal Era. 10(1)
  137. Yang, Y., Tang, J., Luo, H., & Law, R. (2015). Hotel location evaluation: A combination of machine learning tools and web GIS. International Journal of Hospitality Management, 47, 14–24. https://doi.org/10.1016/j.ijhm.2015.02.008
  138. Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for kNN Classification. ACM Transactions on Intelligent Systems and Technology, 8(3), 43:1-43:19. https://doi.org/10.1145/2990508
  139. Zhao, H., Wang, Y., Duan, J., Huang, C., Cao, D., Tong, Y., Xu, B., Bai, J., Tong, J., & Zhang, Q. (2020). Multivariate Time-Series Anomaly Detection via Graph Attention Network. 2020 IEEE International Conference on Data Mining (ICDM), 841–850. https://doi.org/10.1109/ICDM50108.2020.00093
  140. Zhu, Q., Arabameri, A., mum, santosh, Johnbosco, E., & Johnson. (2023, January 31). Integrated assessment of landslide susceptibility in the Kalaleh Basin, Golestan Province, Iran using novel SVR-GOA ensemble validated with BRT, ANN, and elastic net models. https://doi.org/10.21203/rs.3.rs-2458371/v1

Last update:

No citation recorded.

Last update: 2025-05-21 13:27:36

No citation recorded.