skip to main content

Coastal Metropolitan Dynamics in Poland's Tri-City and Indonesia's Semarang: NTL, BLFEI, and OBIA in Google Earth Engine

*Abdurrahman Zaki scopus  -  Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Poland, Poland
Joanna Jaskuła orcid scopus  -  Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Poland, Poland

Citation Format:
Abstract

The increasing global urbanization, particularly in coastal regions, coupled with the risks of climate change and land subsidence, underscores the need to monitor coastal urban development for sustainability. This study focused on the coastal metropolitan regions of Poland's Tri-City and Indonesia's Semarang, employing GIS, remote sensing (RS), and cloud computing. By integrating nighttime light (NTL) and the Built-Up Land Features Extraction Index (BLFEI) through Google Earth Engine (GEE) and Object-Based Image Analysis (OBIA), the study aimed to gain insights into urban development trends. The methodology encompassed image collection, analysis, and classification over three decades (1992, 2007, 2022). Despite efforts to enhance accuracy through built-up masking in subsequent years, the methodology achieved an overall accuracy of 95% for the 2022 maps, while maps in 1992 and 2007 fell short (overall accuracy ranging from 0.81 to 0.90) in comparison. The analysis revealed a gradual expansion of built-up areas in both regions, with Gdynia and Gdańsk emerging as primary drivers in the Tri-City metropolitan region and Semarang as the primary driver in the Semarang metropolitan region. Notably, the Semarang metropolitan region exhibited an increase in waterbody areas, attributed to coastal flooding and land subsidence challenges.

Fulltext View|Download
Keywords: Urbanization, Coastal Metropolitan, Data Fusion, Obia

Article Metrics:

  1. Abdi, A. M. (2020). Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience & Remote Sensing, 57(1), 1–20. https://doi.org/10.1080/15481603.2019.1650447">[Crossref]

  2. Adnani, A. El, Habib, A., Khalidi, K. El, & Zourarah, B. (2019). Spatio-Temporal Dynamics and Evolution of Land Use Land Cover Using Remote Sensing and GIS in Sebou Estuary, Morocco. Journal of Geographic Information System, 11(05), 551–566. https://doi.org/10.4236/jgis.2019.115034">[Crossref]

  3. Ahmed, S., Huifang, W., Akhtar, S., Imran, S., Hassan, G., & Wang, C. (2021). An analysis of urban sprawl in Pakistan: consequences, challenges, and the way forward. International Journal of Agricultural Extension, 8(3), 257–278. https://doi.org/10.33687/008.03.3438">[Crossref]

  4.  Berliana S., S., Susanti, I., Siswanto, B., Nurlatifah, A., Latifah, H., Witono, A., Slamet, L., & Suhermat, M. (2021). Analysis of wet and dry season by using the Palmer Drought Severity Index (PDSI) over Java Island. The 2nd Science and Mathematics International Conference (SMIC 2020), 030010. https://doi.org/10.1063/5.0041843">[Crossref]

  5. Berman, M., Baztan, J., Kofinas, G., Vanderlinden, J.-P., Chouinard, O., Huctin, J.-M., Kane, A., Mazé, C., Nikulkina, I., & Thomson, K. (2020). Adaptation to climate change in coastal communities: findings from seven sites on four continents. Climatic Change, 159(1), 1–16. https://doi.org/10.1007/s10584-019-02571-x">[Crossref]

  6. Bouhennache, R., Bouden, T., Taleb-Ahmed, A., & Cheddad, A. (2019). A new spectral index for the extraction of built-up land features from Landsat 8 satellite imagery. Geocarto International, 34(14), 1531–1551. https://doi.org/10.1080/10106049.2018.1497094">[Crossref]

  7. Buchori, I., Pramitasari, A., Pangi, P., Sugiri, A., Maryono, M., Basuki, Y., & Sejati, A. W. (2021). Factors distinguishing the decision to migrate from the flooded and inundated community of Sayung, Demak: A suburban area of Semarang City, Indonesia. International Journal of Disaster Risk Reduction, 52, 101946. https://doi.org/10.1016/j.ijdrr.2020.101946">[Crossref]

  8. Buchori, I., Sugiri, A., Mussadun, M., Wadley, D., Liu, Y., Pramitasari, A., & Pamungkas, I. T. D. (2018). A predictive model to assess spatial planning in addressing hydro-meteorological hazards: A case study of Semarang City, Indonesia. International Journal of Disaster Risk Reduction, 27, 415–426. https://doi.org/10.1016/j.ijdrr.2017.11.003">[Crossref]

  9. Choi, J. Y., Jeong, H., Choi, K.-Y., Hong, G. H., Yang, D. B., Kim, K., & Ra, K. (2020). Source identification and implications of heavy metals in urban roads for the coastal pollution in a beach town, Busan, Korea. Marine Pollution Bulletin, 161, 111724. https://doi.org/10.1016/j.marpolbul.2020.111724">[Crossref]

  10. Cian, F., Blasco, J., & Carrera, L. (2019). Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS. Geosciences, 9(3), 124. https://doi.org/10.3390/geosciences9030124">[Crossref]

  11. Clement, M. T., & Pino, N. W. (2023). Is urbanization sustainable? A longitudinal study of developing nations, 1990-2015. Environmental Sociology, 9(3), 327–347. https://doi.org/10.1080/23251042.2023.2211321">[Crossref]

  12. Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran. Sustainable Cities and Society, 47, 101502. https://doi.org/10.1016/j.scs.2019.101502">[Crossref]

  13. How, J. D., Hasmadi, I. M., & Melissa, M. F. (2020). Assessing Land-Use and Land-Cover Change (LULCC) Between 2009 and 2019 Using Object-Based Image Analysis (OBIA) in Cameron Highlands, Malaysia. In IOP Conference Series: Earth and Environmental Science (Vol. 540, No. 1, p. 012002). IOP Publishing. https://doi.org/10.1088/1755-1315/540/1/012002">[Crossref]

  14. Das, R. C., Chatterjee, T., & Ivaldi, E. (2021). Sustainability of Urbanization, Non-Agricultural Output and Air Pollution in the World’s Top 20 Polluting Countries. Data, 6(6), 65. https://doi.org/10.3390/data6060065">[Crossref]

  15. Day, J. W., Gunn, J. D., & Burger, J. R. (2021). Diminishing Opportunities for Sustainability of Coastal Cities in the Anthropocene: A Review. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.663275">[Crossref]

  16. Esther R., A. (2022). Urbanization and Environmental Unsustainability: An Ecological Footprint Analysis for Nigeria. African Journal of Environment and Natural Science Research, 5(1), 12–24. https://doi.org/10.52589/AJENSR-WDVDCDUZ">[Crossref]

  17. Ezadin, N. M., & Faraj, A. (2022). Urbanizatition in Developing Countries. Journal of Kurdistani for Strategic Studies, 8.

  18. Fahad, K. H., Hussein, S., & Dibs, H. (2020). Spatial-Temporal Analysis of Land Use and Land Cover Change Detection Using Remote Sensing and GIS Techniques. IOP Conference Series: Materials Science and Engineering, 671(1), 012046. https://doi.org/10.1088/1757-899X/671/1/012046">[Crossref]

  19. Giannakis, I., Bhardwaj, A., Sam, L., & Leontidis, G. (2023). Deep learning universal crater detection using Segment Anything Model (SAM). https://doi.org/10.48550/arXiv.2304.07764">[Crossref]

  20. Goldblatt, R., Stuhlmacher, M. F., Tellman, B., Clinton, N., Hanson, G., Georgescu, M., Wang, C., Serrano-Candela, F., Khandelwal, A. K., Cheng, W.-H., & Balling, R. C. (2018). Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment, 205, 253–275. https://doi.org/10.1016/j.rse.2017.11.026">[Crossref]

  21. Gumel, I. A., Aplin, P., Marston, C. G., & Morley, J. (2020). Time-Series Satellite Imagery Demonstrates the Progressive Failure of a City Master Plan to Control Urbanization in Abuja, Nigeria. Remote Sensing, 12(7), 1112. https://doi.org/10.3390/rs12071112">[Crossref]

  22. Hasnine, M., & Rukhsana. (2020). An Analysis of Urban Sprawl and Prediction of Future Urban Town in Urban Area of Developing Nation: Case Study in India. Journal of the Indian Society of Remote Sensing, 48(6), 909–920. https://doi.org/10.1007/s12524-020-01123-6">[Crossref]

  23. Hishe, S., Bewket, W., Nyssen, J., & Lyimo, J. (2020). Analysing past land use land cover change and CA-Markov-based future modelling in the Middle Suluh Valley, Northern Ethiopia. Geocarto International, 35(3), 225–255. https://doi.org/10.1080/10106049.2018.1516241">[Crossref]

  24. Hu, B., Chen, J., & Zhang, X. (2019). Monitoring the Land Subsidence Area in a Coastal Urban Area with InSAR and GNSS. Sensors, 19(14), 3181. https://doi.org/10.3390/s19143181">[Crossref]

  25.  Hu, L. (2021). A Global Assessment of Coastal Marine Heatwaves and Their Relation With Coastal Urban Thermal Changes. Geophysical Research Letters, 48(9). https://doi.org/10.1029/2021GL093260">[Crossref]

  26. Hu, Y., Yang, C., Yang, J., Li, Y., Jing, W., & Shu, S. (2021). Review on unmanned aerial vehicle remote sensing and its application in coastal ecological environment monitoring. IOP Conference Series: Earth and Environmental Science, 821(1), 012018. https://doi.org/10.1088/1755-1315/821/1/012018">[Crossref]

  27. Junaid, M., Sun, J., Iqbal, A., Sohail, M., Zafar, S., & Khan, A. (2023). Mapping LULC Dynamics and Its Potential Implication on Forest Cover in Malam Jabba Region with Landsat Time Series Imagery and Random Forest Classification. Sustainability, 15(3), 1858. https://doi.org/10.3390/su15031858">[Crossref]

  28. Kejna, M., & Pospieszyńska, A. (2023). Variability in the occurrence of thermal seasons in Poland in 1961–2020. Meteorological Applications, 30(4). https://doi.org/10.1002/met.2132">[Crossref]

  29. Liu, Chang, Yang, K., Bennett, M. M., Guo, Z., Cheng, L., & Li, M. (2019). Automated Extraction of Built-Up Areas by Fusing VIIRS Nighttime Lights and Landsat-8 Data. Remote Sensing, 11(13), 1571. https://doi.org/10.3390/rs11131571">[Crossref]

  30. Liu, Chenli, Li, W., Zhu, G., Zhou, H., Yan, H., & Xue, P. (2020). Land Use/Land Cover Changes and Their Driving Factors in the Northeastern Tibetan Plateau Based on Geographical Detectors and Google Earth Engine: A Case Study in Gannan Prefecture. Remote Sensing, 12(19), 3139. https://doi.org/10.3390/rs12193139">[Crossref]

  31. Liu, T., & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42–54. https://doi.org/10.1016/j.apgeog.2014.10.002">[Crossref]

  32. Luo, J., Ma, X., Chu, Q., Xie, M., & Cao, Y. (2021). Characterizing the Up-To-Date Land-Use and Land-Cover Change in Xiong’an New Area from 2017 to 2020 Using the Multi-Temporal Sentinel-2 Images on Google Earth Engine. ISPRS International Journal of Geo-Information, 10(7), 464. https://doi.org/10.3390/ijgi10070464">[Crossref]

  33. Mathanraj, S., Rusli, N., & Ling, G. H. T. (2021). Applicability of the CA-Markov Model in Land-use/Land cover Change Prediction for Urban Sprawling in Batticaloa Municipal Council, Sri Lanka. IOP Conference Series: Earth and Environmental Science, 620, 012015. https://doi.org/10.1088/1755-1315/620/1/012015">[Crossref]

  34. McGee, T. (2022). Desakota (1991). In The Horizontal Metropolis (pp. 393–413). Springer International Publishing. https://doi.org/10.1007/978-3-030-56398-1_25">[Crossref]

  35. Muhammad, R., Zhang, W., Abbas, Z., Guo, F., & Gwiazdzinski, L. (2022). Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China. Land, 11(3), 419. https://doi.org/10.3390/land11030419">[Crossref]

  36. Pangastuti, E. I., & Wijayanto, Y. (2021). Land cover analysis using object based image analysis based on Landsat 8 OLI images in the city of Jember. IOP Conference Series: Earth and Environmental Science, 747(1), 012047. https://doi.org/10.1088/1755-1315/747/1/012047">[Crossref]

  37. Qi, Y., Li, H., Pang, Z., Gao, W., & Liu, C. (2022). A Case Study of the Relationship Between Vegetation Coverage and Urban Heat Island in a Coastal City by Applying Digital Twins. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.861768">[Crossref]

  38. Qu, Y., Jevrejeva, S., Jackson, L. P., & Moore, J. C. (2019). Coastal Sea level rise around the China Seas. Global and Planetary Change, 172, 454–463. https://doi.org/10.1016/j.gloplacha.2018.11.005">[Crossref]

  39. Ragia, L., & Krassakis, P. (2019). Monitoring the changes of the coastal areas using remote sensing data and geographic information systems. In G. Papadavid, K. Themistocleous, S. Michaelides, V. Ambrosia, & D. G. Hadjimitsis (Eds.), Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019) (p. 48). SPIE. https://doi.org/10.1117/12.2533659">[Crossref]

  40. Rajaoalison, H., & Knez, D. (2021). Current trends In land subsidence of the North-Central part of Poland using DInSAR technique. E3S Web of Conferences, 266, 03006. https://doi.org/10.1051/e3sconf/202126603006">[Crossref]

  41. Raju, V. N. G., Lakshmi, K. P., Jain, V. M., Kalidindi, A., & Padma, V. (2020). Study the Influence of Normalization/Transformation process on the Accuracy of Supervised Classification. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 729–735. https://doi.org/10.1109/ICSSIT48917.2020.9214160">[Crossref]

  42. Ren, S., Luzi, F., Lahrichi, S., Kassaw, K., Collins, L. M., Bradbury, K., & Malof, J. M. (2023). Segment anything, from space? https://doi.org/10.48550/arXiv.2304.13000">[Crossref]

  43. Sanders, F. C., & Oliveira, A. C. de. (2020). Resilience of coastal cities with accumulating climate-change coupled threats; depends on the cooperation of government, experts and the citizens. IOP Conference Series: Earth and Environmental Science, 588(3), 032037. https://doi.org/10.1088/1755-1315/588/3/032037">[Crossref]

  44. Siegel, F. R. (2020). An Example of Coastal Cities Hazard Exposure and Economics (pp. 63–69). https://doi.org/10.1007/978-3-030-22669-5_7">[Crossref]

  45. Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524. https://doi.org/10.1016/j.asoc.2019.105524">[Crossref]

  46. Su, L., Sharp, S. M., Pettigrove, V. J., Craig, N. J., Nan, B., Du, F., & Shi, H. (2020). Superimposed microplastic pollution in a coastal metropolis. Water Research, 168, 115140. https://doi.org/10.1016/j.watres.2019.115140">[Crossref]

  47. Sumari, N. S., Xu, G., Ujoh, F., Korah, P. I., Ebohon, O. J., & Lyimo, N. N. (2019). A Geospatial Approach to Sustainable Urban Planning: Lessons for Morogoro Municipal Council, Tanzania. Sustainability, 11(22), 6508. https://doi.org/10.3390/su11226508">[Crossref]

  48. Sun, L., Chen, J., Li, Q., & Huang, D. (2020). Dramatic uneven urbanization of large cities throughout the world in recent decades. Nature Communications, 11(1), 5366. https://doi.org/10.1038/s41467-020-19158-1">[Crossref]

  49. Taherkhani, M., Vitousek, S., Barnard, P. L., Frazer, N., Anderson, T. R., & Fletcher, C. H. (2020). Sea-level rise exponentially increases coastal flood frequency. Scientific Reports, 10(1), 6466. https://doi.org/10.1038/s41598-020-62188-4">[Crossref]

  50. United Nations. (2019a). The world population prospects 2019: highlights. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf">

  51. United Nations. (2019b). World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). United Nations. https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html">

  52. Valente, S., & Veloso-Gomes, F. (2020). Coastal climate adaptation in port-cities: adaptation deficits, barriers, and challenges ahead. Journal of Environmental Planning and Management, 63(3), 389–414. https://doi.org/10.1080/09640568.2018.1557609">[Crossref]

  53. Viana, C. M., Girão, I., & Rocha, J. (2019). Long-Term Satellite Image Time-Series for Land Use/Land Cover Change Detection Using Refined Open Source Data in a Rural Region. Remote Sensing, 11(9), 1104. https://doi.org/10.3390/rs11091104">[Crossref]

  54. Vitousek, S., Buscombe, D., Vos, K., Barnard, P. L., Ritchie, A. C., & Warrick, J. A. (2023). The future of coastal monitoring through satellite remote sensing. Cambridge Prisms: Coastal Futures, 1, e10. https://doi.org/10.1017/cft.2022.4">[Crossref]

  55. Wang, D., Zhang, J., Du, B., Tao, D., & Zhang, L. (2023). Scaling-up Remote Sensing Segmentation Dataset with Segment Anything Model. http://arxiv.org/abs/2305.02034">

  56. Wang, S., Liu, Y., Feng, Y., & Lei, Z. (2021). To move or stay? A cellular automata model to predict urban growth in coastal regions amidst rising sea levels. International Journal of Digital Earth, 14(9), 1213–1235. https://doi.org/10.1080/17538947.2021.1946178">[Crossref]

  57. Wdowinski, S., Oliver-Cabrera, T., & Fiaschi, S. (2020). Land subsidence contribution to coastal flooding hazard in southeast Florida. Proceedings of the International Association of Hydrological Sciences, 382, 207–211. https://doi.org/10.5194/piahs-382-207-2020">[Crossref]

  58. Wojtowicz-Jankowska, D., & Bou Kalfouni, B. (2022). A Vision of Sustainable Design Concepts for Upgrading Vulnerable Coastal Areas in Light of Climate Change Impacts: A Case Study from Beirut, Lebanon. Sustainability, 14(7), 3986. https://doi.org/10.3390/su14073986">[Crossref]

  59. Woodcock, C. E., Loveland, T. R., Herold, M., & Bauer, M. E. (2020). Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sensing of Environment, 238, 111558. https://doi.org/10.1016/j.rse.2019.111558">[Crossref]

  60. Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179">[Crossref]

  61. Yadav, S., Sahu, R. K., & Prasad, S. (2022). Land Cover Cloud Analytics: from Global Services to Regional Insights. International Journal of Geoinformatics, 1285–1298. https://doi.org/10.52939/ijg.v18i6.2451">[Crossref]

  62. Zaki, A., Buchori, I., Sejati, A. W., & Liu, Y. (2022). An object-based image analysis in QGIS for image classification and assessment of coastal spatial planning. The Egyptian Journal of Remote Sensing and Space Science, 25(2), 349–359. https://doi.org/10.1016/j.ejrs.2022.03.002">[Crossref]

  63. Zhang, C., & Li, X. (2022). Land Use and Land Cover Mapping in the Era of Big Data. Land, 11(10), 1692. https://doi.org/10.3390/land11101692">[Crossref]

  64. Zhang, J., Zhou, Z., Mai, G., Mu, L., Hu, M., & Li, S. (2023). Text2Seg: Remote Sensing Image Semantic Segmentation via Text-Guided Visual Foundation Models. http://arxiv.org/abs/2304.10597">

  65. Zhang, S. (2020). Application of Remote Sensing Information Technology and Geographic Information System in Land Dynamic Monitoring. International Journal of Geology, 5(1). https://doi.org/10.26789/IJG.2020.01.004">[Crossref]

  66. Zhang, X., & Pan, J. (2021). Spatiotemporal Pattern and Driving Factors of Urban Sprawl in China. Land, 10(11), 1275. https://doi.org/10.3390/land10111275">[Crossref]


Last update:

No citation recorded.

Last update: 2025-05-28 15:17:28

No citation recorded.