skip to main content

Automatic Image Processing for Detecting Courtyards Geo-Locations of Urban Fabric of ‎Mosul Old City

*Emad Hani Ismaeel orcid scopus  -  Department of Architecture, College of Engineering, University of Mosul, Iraq, Iraq
Mazin Jaber Omer  -  Department of Architecture, College of Engineering, University of Mosul, Iraq, Iraq
Raid Rafi Al-Nima  -  Northern Technical University, Mosul, Iraq, Iraq

Citation Format:
Abstract

In the post-conflict periods, cities often suffer significant damage, requiring more effort to rebuild. However, proper reconstruction requires documentation of the previous urban fabric. Aerial photography is an important element in documenting the components of the urban fabric. In 2017, extensive destruction occurred in many areas of Mosul's Old City (MOC), with some districts suffering so much damage that the distinctive urban fabric was lost. The MOC is characterized by its dense urban structure and the presence of internal courtyards within its buildings. This paper aims to utilize historical aerial photographs to relocate the position of building courtyards in parts of the MOC urban fabric, as one of the first steps in a comprehensive plan to represent them in the absence of the necessary documents and surveys. The methodology proposed in this paper involves a series of automated image processing (AIP) stages, where the position of the courtyard can be determined in the form of a network whose geolocation can be easily identified. This study offers a stepwise and semi-automated methodology for courtyard location determination. Furthermore, this study demonstrates the efficacy of applying automated image processing techniques in the context of preventive conservation and protection of urban structures in historic cities. However, the study encountered limitations related to the type and accuracy of the available aerial images. Additionally, the potential use of more advanced software could yield more accurate results or facilitate the generalization of findings to other cities, a direction suggested for future research.

Fulltext View|Download
Keywords: Automatic Image Processing; Historic Core, Post-Conflict ‎Reconstruction, Heritage Conservation, Mosul ‎Old City.

Article Metrics:

  1. Al-Bishawi, Manal A., Ghadban, Shadi S. (2015). Physical space, social behaviour and socioeconomic changes in traditional neighbourhoods: A case study of the traditional city of Nablus City. Culture and Society, 6 (2015) 125 e133. http://dx.doi.org/10.1016/j.ccs.2015.06.002">[Crossref]

  2. Al-Hafith, O., Satish B.K., De Wilde Pieter (2019). The impact of courtyard geometry on its mean radiant temperature, CISBAT 2019. Journal of Physics: Conference Series, IOP Publishing 1343, 012022. https://doi.org/10.1088/1742-6596/1343/1/012022">[Crossref]

  3. Al-Hafitha, Omar, Satish, B. K., Bradbury, Simon, De Wilde, Pieter (2017). The impact of courtyard compact urban fabric on its shading: case study of Mosul city, Iraq. CISBAT 2017 International Conference – Future Buildings and Districts – Energy Efficiency from Nano to Urban Scale, CISBAT 2017 6-8 September, Lausanne, Switzerland.

  4. Al-Harami Albandari, Furlan Raffaello (2019). The urban fabric of Al Zubarah city: Unveiling an urban regeneration vision for modern urbanism in Qatar. Journal of Urban Regeneration & Renewal12(2), 151-176.

  5. Alnaim, M. M. (2024). The typology of courtyard space in Najdi Architecture, Saudi Arabia: a response to human needs, culture, and the environment. Journal of Asian Architecture and Building Engineering23(1), 91-110. https://doi.org/10.1080/13467581.2023.2229399">[Crossref]

  6. Al-Nima, R. R. (2017). Signal processing and machine learning techniques for human verification based on finger textures (Doctoral dissertation, Newcastle University).

  7. Al-Nima, R. R. Dlay, S. S. Woo, W. L. and Chambers, J. A. (2015). Human authentication with finger textures based on image feature enhancement. In 2nd IET International Conference on Intelligent Signal Processing 2015 (ISP). Stevenage UK: IET.

  8. Al-Ruzouq, Rami (2012). Photogrammetry for Archaeological Documentation and Cultural Heritage Conservation, Special Applications of Photogrammetry, Daniel Carneiro da Silva, Intech Open, https://www.intechopen.com/chapters/36196">[Crossref]

  9. Baiz, Wezha Hawez, Fathulla, Shaida Jamal (2016). Baiz, W. H., & Fathulla, S. J. (2017). Urban courtyard housing form as a response to human need, culture and environment in hot climate regions: Baghdad as a case study. International Journal of Engineering Research and Applications6(9), 10-19.

  10. Bernard, J., Bocher, E., Gousseff, M., Leconte, F., ‎& Le Saux Wiederhold, E. (2024). A generic algorithm to automatically classify urban fabric according to the Local Climate Zone system: implementation in GeoClimate 0.0. 1 and application to French cities. Geoscientific Model Development17(5), 2077-2116.‎‎ https://doi.org/10.5194/gmd-17-2077-2024">[Crossref]

  11. Bocher, E., Petit, G., Bernard, J., & Palominos, S. ‎‎(2018). A geoprocessing framework to compute urban indicators: The MApUCE tools chain. Urban climate24, 153-174.https://doi.org/10.1016/J.UCLIM.2018.01.008">[Crossref]

  12. Cazacu, R. (2021). Matlab Framework for Image Processing and Feature Extraction Flexible Algorithm Design. In Proceedings (Vol. 63, No. 1, p. 72). MDPI.https://doi.org/10.3390/proceedings2020063072">[Crossref]

  13. Chen, J., Yang, C., & Yu, Z. (2022). Research on Machine Intelligent Perception of Urban Geographic Location Based on High Resolution Remote Sensing Images. Photogrammetric Engineering & Remote Sensing88(4), 223-231.‎https://doi.org/10.14358/pers.21-00017r3">[Crossref]

  14. Chen, Y., Weng, Q., Tang, L., Liu, Q., Zhang, X., & ‎Bilal, M. (2021). Automatic mapping of urban green spaces using a geospatial neural network. GIScience & Remote Sensing58(4), 624-642.‎‎ https://doi.org/10.1080/15481603.2021.1933367">[Crossref]

  15. David, P. (2008). Detecting planar surfaces in outdoor urban environments. Army Research Laboratory.https://apps.dtic.mil/sti/pdfs/ADA488059.pdf">[Crossref]

  16. Doneus, M., Forwagner, U., Liem, J., and Sevara, Ch. (2017). APIS–A Digital Inventory of Archaeological Heritage based on Remote Sensing Data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences4, 67-73. https://doi.org/10.5194/isprs-annals-IV-2-W2-67-2017">[Crossref]

  17. Fang, Z., Qi, J., Yang, T., Wan, L., & Jin, Y. (2020). Reading" cities with computer vision: a new multi-spatial scale urban fabric dataset and a novel convolutional neural network solution for urban fabric classification tasks. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems (pp. 507-517).https://doi.org/10.1145/3397536.3422240">[Crossref]

  18. Furlan, R. Faggion, L. (2017). Urban regeneration of GCC cities: preserving the urban fabric’s cultural heritage and social complexity.

  19. Guedouh, M. S., & Zemmouri, N. (2017). Courtyard building's morphology impact on thermal and luminous environments in hot and arid region. Energy Procedia119, 153-162. https://doi.org/10.1016/j.egypro.2017.07.063">[Crossref]

  20. Gupta, J., Chakraborty, M., Paul, A., & Korrapatti, V. (2017). A comparative study of thermal performances of three mud dwelling units with courtyards in composite climate. Journal of Architecture and Urbanism41(3), 184-198.https://doi.org/10.3846/20297955.2017.1355276">[Crossref]

  21. Hamad, A.A., Ismaeel, E.H. (2023). Integrative Conservation for Recovering the Riverfront of Mosul Town. International Journal of Sustainable Development & Planning18(1). https://doi.org/10.18280/ijsdp.180104">[Crossref]

  22. Haraty, H. J. S., Raschid, M. Y. M., & Yunos, M. Y. M. (2019). Assessment of Morphological Analysis of Iraqi Traditional Courtyards Houses. In MATEC Web of Conferences (Vol. 266, p. 06007). EDP Sciences.https://doi.org/10.1051/matecconf/201926606007">[Crossref]

  23. Hussein, K. A., & Ismaeel, E. H. (2021). Regenerating traditional houses facades of old Mosul city by Shape Grammar. A| Z ITU Journal of the Faculty of Architecture18(2), 461-476.https://www.az.itu.edu.tr/index.php/jfa/article/view/312/83">[Crossref] 

  24. Ismaeel, E. H., Dabdoob, R. M., & Hussein, K. A. (2022). Predicting of educational buildings locations by integrating spatial distribution assessment techniques high schools in Mosul as a case study. Archivio di studi urbani e regionali: 135, 3, 2022, 135-159.https://doi.org/10.3280/ASUR2022-135007">[Crossref]

  25. Ismaeel, E., & Alabaachi, M. (2024). Difficulties in rebuilding historic bridges after conflicts: the case of the Mosul stone bridge. Budownictwo i Architektura23(4), 024-040.https://doi.org/10.35784/bud-arch.6495">[Crossref]

  26. Ismaeel, E.H. (2023). D&C technique as an MCDM tool for managing the heritage value assessment of historic buildings in post-war cities: Mosul Old City as a case study. Journal of Cultural Heritage Management and Sustainable Development.https://doi.org/10.1108/JCHMSD-03-2022-0042">[Crossref]

  27. Jasim, S., & Ismaeel, E. H. (2025). Criteria and indicators affecting the most appropriate reuse of heritage buildings in old cities: Mosul old city as a case study. Al-Qadisiyah Journal for Engineering Sciences, 18(1), 27–35. https://doi.org/10.30772/qjes.2023.141934.1009">[Crossref]

  28. Kamelnia, H., & Hanachi, P. (2022). Building new heritage for the future: investigating community architecture paradigms in contemporary architecture of Iran (1978–2020). Journal of Architecture and Urbanism, 46(2), 171–190. https://doi.org/10.3846/jau.2022.16663">[Crossref]

  29. Karofa, O. H. (2011). Evaluating of Functional Efficiency of Modern Houses Spaces in Mosul City. Diyala journal of engineering sciences4(1).https://doi.org/10.24237/djes.2011.04112">[Crossref]

  30. Khaleel, S. A., & Kasim, H. (2019). Architectural image of mosques in terms of historical drawings mental image of mosques in miniature of Maqamat Al-Hariri. Al-Rafidain Engineering Journal (AREJ), 24 (2). https://doi.org/10.33899/rengj.2019.164322">[Crossref]

  31. Kharoufa, O. H. (2016). Identifying the Shape Characteristics of Architectural Structures by using Technique of Digital Classification of Pictures. Tikrit Journal of Engineering Sciences23(4), 52-63. https://doi.org/10.25130/tjes.23.4.06">[Crossref]

  32. Kirwale, K. S., Kawathekar, S. S., & Deshmukh, R. R. (2021). Automatic Detection of Buildings Using High Resolution Images for Medium Density Regions. In Computational Intelligence in Data Science: 4th IFIP TC 12 International Conference, ICCIDS 2021, Chennai, India, March 18–20, 2021, Revised Selected Papers 4 (pp. 125-131). Springer International Publishing. https://doi.org/10.1007/978-3-030-92600-7_12">[Crossref]

  33. Kumar, K., Saurabh, D., & Gaur, N. (2014). A Review on Image Processing. In National Conference on Emerging Trends in Electrical, Instrumentation & Communication Engineering (Vol. 4, No. 7, pp. 47-55).

  34. Li, M. H., Yu, Y., Wei, H., & Chan, T. O. (2024). Classification of the qilou (arcade building) using a robust image processing framework based on the Faster R-CNN with ResNet50. Journal of Asian Architecture and Building Engineering23(2), 595-612. https://doi.org/10.1080/13467581.2023.2238038">[Crossref]

  35. Lim, J. S. (1990). Two-dimensional signal and image processing, signal processing series, Prentice Hal PTR, Hoboken, New Jersey: U.S.A. ISBN: 978-0139353222.

  36. Matlab (2001). Image Processing Toolbox, For Use with MATLAB, Computation, Visualization, Programming”, Version 3, Natick, MA: The Math Works Inc.

  37. Mohammed, F. T., & Yahya, H. A. (2022). The role of building materials’ properties in sustainable reconstruction of residential buildings in old Mosul. In AIP Conference Proceedings (Vol. 2660, No. 1). AIP Publishing. https://doi.org/10.1063/5.0108011">[Crossref]

  38. Moon, D., Lee, K., Ko, H., Kwon, S., Lee, S., & Song, J. (2022). Analysis of accuracy factor and pre-processing methodology of image compensation for 3D reconstruction using 2D image obtained from unmanned aerial vehicle (UAV). Journal of Asian Architecture and Building Engineering21(5), 2081-2094. https://doi.org/10.1080/13467581.2021.1971679">[Crossref]

  39. Murtiyoso, A., Grussenmeyer, P., & Suwardhi, D. (2019). Technical considerations in Low-Cost heritage documentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences42, 225-232. https://doi.org/10.5194/isprs-archives-XLII-2-W17-225-2019">[Crossref]

  40. Mustafa, F. S. (2009). Face recognition using invariant moments features. Tikrit Journal of Pure Science14(2).

  41. Naseri, H., & Farsani, Z. A. (2022). An investigation into geometric ratios of the sunken courtyards in traditional Iranian houses (a field study on Yazd and Kashan). Journal of Architecture and Urbanism46(1), 58-67. https://doi.org/10.3846/jau.2022.15719">[Crossref]

  42. Ota, Y., & Susaki, J. (2010). Efficient 3D modeling of buildings in dense urban areas", Proceedings of the 31st Asian Conference on Remote Sensing (ACRS), National Convention Center, Hanoi, Nov. 1-5.

  43. Pasupuleti, M. K. (2024). GeoDynamics: Innovating ‎Urban Spaces with GIS and Remote Sensing ‎‎Technologies (pp. 316–335).

  44. Pelorosso, R., Gobattoni, F., Leone, A. (2017). Green Courtyards as Urban Cool Islands: towards Nature-based climate adaptation plans of compact cities. CSE-City Safety Energy, (1), 27-36.

  45. Saeed, Z. O., Almukhtar, A., Abanda, H., & Tah, J. (2022). Mosul city: housing reconstruction after the ISIS war. Cities120, 103460.  https://doi.org/10.1016/j.cities.2021.103460">[Crossref]

  46. Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., & Dellaert, F. (2008). Detecting and matching repeated patterns for automatic geo-tagging in urban environments. In 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-7). IEEE. https://doi.org/10.1109/CVPR.2008.4587461">[Crossref]

  47. Shi, H., Chen, L., Bi, F. K., Chen, H., & Yu, Y. (2015). Accurate urban area detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters12(9), 1948-1952. https://doi.org/10.1109/LGRS.2015.2439696">[Crossref]

  48. Shi, W., & Mao, Z. (2017). Automatic detection of urban area from the remote sensing imagery based on improved DS evidence theory. The Imaging Science Journal65(5), 261-269.https://doi.org/10.1080/13682199.2017.1327198">[Crossref]

  49. Sirmacek, B., & Unsalan, C. (2011). A probabilistic approach to detect urban regions from remotely sensed images based on combination of local features. https://elib.dlr.de/70575/">[Crossref]

  50. Sun, W. (2024). Visual Experimentation Research on Traditional Residential Courtyard Spaces Using Virtual Eye-Tracking Technology. Communications in Humanities Research, 36(1), 248–260. ‎‎https://doi.org/10.54254/2753-7064/36/20240004">[Crossref]

  51. Sundus, K. E., & AL_Mamare, S. H. (2014). Using digital image processing to make an intelligent gate. International Journal of Advanced Computer Science and Applications5(5).

  52. Susaki, J. (2013). Knowledge-based modeling of buildings in dense urban areas by combining airborne LiDAR data and aerial images. Remote Sensing5(11), 5944-5968https://doi.org/10.3390/rs5115944">.[Crossref[

  53. Tavares, J. M. R. S. (2010). Image Processing and Analysis: Applications and Trends, Fifth International Conference on Advances and Trends in Engineering Materials and their Applications AES-ATEMA’ 2010 (LE QUEBEC). AES-Advanced Engineering Solutions (Ottawa, Canada) ISBN 0-9780479.

  54. Themistocleous, K., Ioannides, M., Agapiou, A., & Hadjimitsis, D. G. (2015, June). The methodology of documenting cultural heritage sites using photogrammetry, UAV, and 3D printing techniques: the case study of Asinou Church in Cyprus. In Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015) (Vol. 9535, pp. 312-318). SPIE.

  55. Tyagi, V. (2018). Understanding Digital Image Processing. CRC Press. -2.

  56. UN-Habitat - United Nations Human Settlements Programme in Iraq, and UNESCO - United Nations Educational, Scientific and Cultural Organization (2018). Initial Planning Framework for The Reconstruction of Mosul. https://unhabitat.org/sites/default/files/documents/2019-09/initial_planning-framework_mosul-update.pdf">

  57. UNEP. (2018). United Nations Environment Programme (UNEP) Technical Report - Mosul Debris Management Assessment. https://www.unep.org/resources/publication/mosul-debris-management-assessment">

  58. Vo, Q. D., Mueller, K., & De, P. (2013). WhereAmI: image-based positioning in dense urban areas. In Proceeding of the 11th annual international conference on Mobile systems, applications, and services (pp. 527-528).https://doi.org/10.1145/2462456.2465716">[Crossref]

  59. Xu, Z., Huang, X., Zheng, X., Deng, J. Y., & Sun, B. (2024). A Performance and Data-Driven Method for Optimization of Traditional Courtyards. Sustainability16(13), 5779.https://doi.org/10.3390/su16135779">[Crossref]

  60. Yazdi, H., Vukorep, I., Banach, M., Moazen, S., Nadolny, A., Starke, R., & Bazazzadeh, H. (2021). Central courtyard feature extraction in remote sensing aerial images using deep learning: a case-study of Iran. Remote Sensing13(23), 4843. https://doi.org/10.3390/RS13234843">[Crossref]

  61. Yu, T., Zhan, X., Tian, Z., & Wang, D. (2023). A Machine Learning-Based Approach to Evaluate the Spatial Performance of Courtyards—A Case Study of Beijing’s Old Town. Buildings13(7), 1850.‎‎https://doi.org/10.3390/buildings13071850">[Crossref]

  62. Zakaria, M. A., & Kubota, T. (2014). Environmental Design Consideration for Courtyards in Residential Buildings in Hot-humid Climates: A Review. International Journal of Built Environment and Sustainability1(1). https://doi.org/10.11113/ijbes.v1.n1.7">[Crossref]

  63. Zapłata, R., & Różycki, S. (2015). Historic aerial photographs in the analysis of cultural landscape–case studies from Poland.

  64. Zhan, Q., Liang, Y., & Xiao, Y. (2012). Location Determination in Urban Environment from Image Sequences. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences39, 453-456. ‎https://doi.org/10.5194/isprsarchives-XXXIX-B3-453-2012">[Crossref]

  65. Zhang, Y., & Ji, J. (2019, August). An Automated City Image Symbol Identification and Comparison Method. In 2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (Vol. 2, pp. 142-145). IEEE. ‎‎https://doi.org/10.1109/IHMSC.2019.10129">[Crossref]

  66. Zhang, Z., Zhou, M., Tang, L. L., & Li, C. R. (2012, July). Automatic detection and mapping of urban buildings in high resolution remote sensing images. In 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 5721-5724). IEEE.https://doi.org/10.1109/IGARSS.2012.6352312">[Crossref]


Last update:

No citation recorded.

Last update: 2025-05-31 14:21:27

No citation recorded.