BibTex Citation Data :
@article{geoplanning69489, author = {Imanuela Pertiwi and Trismahargyono Trismahargyono and Marniati Marniati and Joshua Purba}, title = {Post-Seismic Surface Deformation of The Tarakan Earthquake in 2015 Using The DInSAR Technique}, journal = {Geoplanning: Journal of Geomatics and Planning}, volume = {12}, number = {1}, year = {2025}, keywords = {SAR Imagery; DinsSAR; Deformation; Subsidence; Uplift; Fault}, abstract = { Deformation can help predict the presence and severity of an earthquake. SAR image data can be used to calculate post-seismic surface deformation using the InSAR and DInSAR methods. DInSAR (Differential Interferometric Synthetic Aperture Radar) is a well-established technology for monitoring subsidence and uplift with millimeter precision. This study uses SAR imagery to detect surface deformation caused by a magnitude M 6.1 earthquake on December 21, 2015, at 01:47:37 WIB in Tarakan Regency, North Borneo. The data used is Sentinel-1 satellite imagery in SLC (single-look complex) format, with a master image from December 18, 2015 (3 days before the earthquake), and a slave image from January 11, 2016 (21 days after). The interferogram generated by the Tarakan earthquake shows deformation patterns radiating in three directions: northeast, southeast-southwest, and southwest-northwest. Tarakan City, located south-southwest of the epicenter, experienced the highest subsidence deformation of 0.001–0.035 meters. On December 21, 2015, the Tana Tidung I Regency area, 33 kilometers southwest of the epicenter, showed the highest uplift deformation (0.019–0.079 meters). The largest uplift in Tana Tidung II Regency (0.069 meters), about 10 kilometers north of the epicenter, occurred near the fault zone. Surface deformation due to the Tarakan earthquake contributes to seismic hazard assessment in North Borneo and indicates other locally active faults. Uplift to the east and subsidence to the west of the epicenter suggest an oblique-normal fault, with dominant strike-slip motion and normal (downward) fault blocks to the west. }, issn = {2355-6544}, pages = {79--94} doi = {10.14710/geoplanning.12.1.79-94}, url = {https://ejournal.undip.ac.id/index.php/geoplanning/article/view/69489} }
Refworks Citation Data :
Deformation can help predict the presence and severity of an earthquake. SAR image data can be used to calculate post-seismic surface deformation using the InSAR and DInSAR methods. DInSAR (Differential Interferometric Synthetic Aperture Radar) is a well-established technology for monitoring subsidence and uplift with millimeter precision. This study uses SAR imagery to detect surface deformation caused by a magnitude M 6.1 earthquake on December 21, 2015, at 01:47:37 WIB in Tarakan Regency, North Borneo. The data used is Sentinel-1 satellite imagery in SLC (single-look complex) format, with a master image from December 18, 2015 (3 days before the earthquake), and a slave image from January 11, 2016 (21 days after). The interferogram generated by the Tarakan earthquake shows deformation patterns radiating in three directions: northeast, southeast-southwest, and southwest-northwest. Tarakan City, located south-southwest of the epicenter, experienced the highest subsidence deformation of 0.001–0.035 meters. On December 21, 2015, the Tana Tidung I Regency area, 33 kilometers southwest of the epicenter, showed the highest uplift deformation (0.019–0.079 meters). The largest uplift in Tana Tidung II Regency (0.069 meters), about 10 kilometers north of the epicenter, occurred near the fault zone. Surface deformation due to the Tarakan earthquake contributes to seismic hazard assessment in North Borneo and indicates other locally active faults. Uplift to the east and subsidence to the west of the epicenter suggest an oblique-normal fault, with dominant strike-slip motion and normal (downward) fault blocks to the west.
Article Metrics:
Azhari, M F, Karyanto, K., Rasimeng, S., & Mulyanto, B. S. (2020). Analysis of surface deformation using dinsar method (differential interferometry synthetic aperture radar) in case study lombok earthquakes on august 2018. J. Geof. Ekspl, 6, 131-144.. https://doi.org/10.23960/jge.v6i2.68">[Crossref]
ASF HyP3 Sentinel-1 Burst InSAR Product Guide. URL https://hyp3-docs.asf.alaska.edu/hyp3-docs/guides/burst_insar_product_guide/">
Balaguru, A., Nichols, G., & Hall, R. (2003). The origin of the'circular basins' of Sabah, Malaysia.
Badan Meteorologi Klimatologi Geofisika (BMKG) Data Catalog. URL https://bmkg.go.id">
Bedini, Bedini, E. (2020). Persistent Scatterer Interferometry of Sentinel-1 time series to detect ground subsidence in the city of Recife, Brazil. Journal of Hyperspectral Remote Sensing, 10(1), 1–9. https://doi.org/10.29150/jhrs.v10.1.p1-9.
Braun, A., & Veci, L. (2020). Sentinel-1 toolbox TOPS interferometry tutorial. Waterloo, ON, Canada: European Space Agency.
Cahyaningrum, A. P., (2024). Analisis Deformasi Berbasis Citra SAR. Pelatihan Teknis Analisis Data Science BMKG
Calvet, A., Balbarani, S., & Gende, M. (2023). DinSAR coseismic deformation measurements of the Mw 8.3 Illapel earthquake (Chile). Journal of Geodetic Science, 13(1), 20220154.https://doi.org/10.1515/jogs-2022-0154">[Crossref]
Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing. Guilford press.
Castaneda, C., Pourthie, N., & Souyris, J. C. (2011). Dedicated SAR interferometric analysis to detect subtle deformation in evaporite areas around Zaragoza, NE Spain. International Journal of remote sensing, 32(7), 1861-1884.https://doi.org/10.1080/01431161003631584">[Crossref]
Center of Earthquake and Tsunami BMKG., (2016). Buletin Gempabumi dan Tsunami Indonesia Tahun 2015. Book ISSN: 2477 – 0035.
Erdi, A., Jackson, C. A. L., & Soto, J. I. (2023). Extensional deformation of a shale‐dominated delta: Tarakan Basin, offshore Indonesia. Basin Research, 35(3), 1071-1101.https://doi.org/10.1111/bre.12747">[Crossref]
Fahrland, E., Jacob, P., Schrader, H., & Kahabka, H. (2020). Copernicus digital elevation model product handbook. Airbus Defence and Space—Intelligence: Potsdam, Germany.
Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191.https://doi.org/10.1029/JB094iB07p09183">[Crossref]
Global Centroid-Moment Tensor Catalog Web Search. URL https://www.globalcmt.org/CMTsearch.html"> .
Gorsel, J. T. V. (2018). Bibliography of the Geology of Indonesia and Surrounding Areas, IV. Borneo (incl. Makassar Straits) 7.0. http://www.vangorselslist.com">www.vangorselslist.com
Gourmelen, N., Amelung, F., & Lanari, R. (2010). Interferometric synthetic aperture radar–GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone. Journal of Geophysical Research: Solid Earth, 115(B9).https://doi.org/10.1029/2009JB007064">[Crossref]
Govil, H., & Guha, S. (2023). Underground mine deformation monitoring using Synthetic Aperture Radar technique: A case study of Rajgamar coal mine of Korba Chhattisgarh, India. Journal of Applied Geophysics, 209, 104899.. https://doi.org/10.1016/j.jappgeo.2022.104899">[Crossref]
Gürpinar, A., Serva, L., Livio, F., & Rizzo, P. C. (2017). Earthquake-induced crustal deformation and consequences for fault displacement hazard analysis of nuclear power plants. Nuclear Engineering and Design, 311, 69-85. https://doi.org/10.1016/j.nucengdes.2016.11.007">[Crossref]
Hall, R. (2013). Contraction and extension in northern Borneo driven by subduction rollback. Journal of Asian Earth Sciences, 76, 399-411.https://doi.org/10.1016/j.jseaes.2013.04.010">[Crossref]
Hall, R. (2019). The subduction initiation stage of the Wilson cycle..” https://doi.org/10.1144/SP470.3">[Crossref]
Hanifa, R. N., Anantasena, Y., Sadly, M., & Ito, T. (2019, June). Ground deformation identification related to 2018 lombok earthquake series based on Sentinel-1 data. In IOP Conference Series: Earth and Environmental Science (Vol. 280, No. 1, p. 012004). IOP Publishing. [https://doi.org/10.1088/1755-1315/280/1/012004">Crossref]
Hendardi, R. P., Hidajat, W. K., Setyawan, R., Kurniasih, A., Qadaryati, N., Khorniawan, W. B., ... & Ringga, A. G. (2024). Evaluation of Reservoir Characteristics of Wells X, Y, Z in the Pliocene Interval of the Tarakan Sub-Basin, Tarakan Basin, North Kalimantan. Journal of Applied Geology, 9(2), 126-138.. https://doi.org/10.22146/jag.86053">[Crossref]
Hogenson, K., Arko, S. A., Buechler, B., Hogenson, R., Herrmann, J., & Geiger, A. (2016, December). Hybrid Pluggable Processing Pipeline (HyP3): A cloud-based infrastructure for generic processing of SAR data. In Agu fall meeting abstracts (Vol. 2016, pp. IN21B-1740).https://doi.org/10.5281/zenodo.15498989">[Crossref]
Indonesia Geospasial: Sistem Informasi Geografi dan Penginderaan Jauh., (2020). Shapefile (SHP) Geologi Provinsi Borneo Utara. URL https://www.indonesia-geospasial.com/2020/03/download-data-shapefile-shp-geologi-se.html"> .
Islam, L. J. F., Prasetyo, Y., & Sudarsono, B. (2017). Analisis penurunan muka tanah (Land subsidence) kota semarang menggunakan citra sentinel-1 berdasarkan metode dinsar pada perangkat lunak SNAP. Jurnal Geodesi Undip, 6(2), 29-36.https://doi.org/10.14710/jgundip.2017.16253">[Crossref]
Jaya, L. M. G., Simatupang, M., Kadir, A., & Saleh, F. (2021). Using DInSAR to map ground deformation on road infrastructure (case study: North Buton, Southeast Sulawesi). In IOP Conference Series: Earth and Environmental Science (Vol. 871, No. 1, p. 012019). IOP Publishing.https://doi.org/10.1088/1755-1315/871/1/012019">[Crossref]
Jiang, X., Min, X., Ye, T., Li, X., & Hu, X. (2023). Monitoring the subsidence at different periods in high underground water level coal mine areas using differential interferometric synthetic aperture radar (D-InSAR). Geocarto International, 38(1), 2215730.. https://doi.org/10.1080/10106049.2023.2215730">[Crossref]
Kurniawan, R., & Anjasmara, I. M. (2016). Pemanfaatan Metode Differential Intermerometry Synthetic Aperture Radar (DInSAR) untuk Pemantauan Deformasi Akibat Aktivitas Eksploitasi Panasbumi. Jurnal Teknik ITS, 5(2), B331-B336.
Lu, C. H., Huang, S. Y., Hsu, Y. C., Yen, I. C., Tung, H., & Kuo, Y. T. (2025). Fast report: the 2025 M6. 4 Dapu earthquake: preliminary field observation and surface deformation analysis. Terrestrial, Atmospheric and Oceanic Sciences, 36(1), 14.https://doi.org/10.1007/s44195-025-00099-5">[Crossref]
Manconi, A. (2021). How phase aliasing limits systematic space-borne DInSAR monitoring and failure forecast of alpine landslides. Engineering Geology, 287, 106094.https://doi.org/10.1016/j.enggeo.2021.106094">[Crossref]
Nasa’s Earth Science Data System (ESDS). https://www.earthdata.nasa.gov/"> .
North Borneo Regional Disaster Management Agency. URL https://kaltim.tribunnews.com">
Panuntun, H., Miyazaki, S. I., Fukuda, Y., & Orihara, Y. (2018). Probing the Poisson's ratio of poroelastic rebound following the 2011 M w 9.0 Tohoku earthquake. Geophysical Journal International, 215(3), 2206-2221.https://doi.org/10.1093/gji/ggy403">[Crossref]
Permana, A. K., Sendjaja, Y. A., Panggabean, H., & Fauzely, L. (2018). Depositional Environment and Source Rocks Potential of the Miocene Organic Rich Sediments, Balikpapan Formation, East Kutai Sub Basin, Kalimantan. Jurnal Geologi dan Sumberdaya Mineral, 19(3), 171-186.https://doi.org/10.33332/jgsm.geologi.v19i3.407">[Crossref]
Petersen, M. D., Dawson, T. E., Chen, R., Cao, T., Wills, C. J., Schwartz, D. P., & Frankel, A. D. (2011). Fault displacement hazard for strike-slip faults. Bulletin of the Seismological Society of America, 101(2), 805-825.https://doi.org/10.1785/0120100035">[Crossref]
Purba, J., Priadi, R., Amelia, R., Dwilyantari, A. A. I., Jaya, L. M. G., Ode Restele, L., & Gana Putra, I. (2024). Surface deformation and its implications for land degradation after the 2021 Flores earthquake (M7. 4) using differential interferometry synthetic aperture radar. Journal of Degraded & Mining Lands Management, 12(1).https://doi.org/10.15243/jdmlm.2024.121.6819">[Crossref]
Purba, S. M., Alyssa, Y. F., Nadia, M., Asra, N., & Muksin, U. (2025, April). The Influence of Seismometer Coverage on the Earthquake Focal Mechanism Solution (Case Study: Toba Swarm Earthquake). In IOP Conference Series: Earth and Environmental Science (Vol. 1479, No. 1, p. 012014). IOP Publishing.https://doi.org/10.1088/1755-1315/1479/1/012014">[Crossref]
Puspita, A., Pertiwi, I. I., & Sinki, K. P. (2024, July). Surface deformation analysis due to the Poso earthquake on May 29, 2017 using the DInSAR method. In IOP Conference Series: Earth and Environmental Science (Vol. 1373, No. 1, p. 012049). IOP Publishing.https://doi.org/10.1088/1755-1315/1373/1/012049">[Crossref]
Sari, A. R., Handayani, H. H., & Agustan, A. (2014). Penerapan metode Dinsar untuk analisa deformasi akibat gempa bumi dengan validasi data GPS Sugar (Studi kasus: Kepulauan Mentawai, Sumatera Barat). Geoid, 10(1), 26-31. https://journal.its.ac.id/index.php/geoid/article/view/1431">
Souza, W. D. O., de Moura Reis, L. G., da Silva Pereira Cabral, J. J., Ruiz-Armenteros, A. M., Quental Coutinho, R., da Penha Pacheco, A., & Ramos Aragão Junior, W. (2024). Analysis of Urbanization-Induced Land Subsidence in the City of Recife (Brazil) Using Persistent Scatterer SAR Interferometry. Remote Sensing, 16(14), 2592.
Sriyanto, S. P. D., & Ifantyana, I. (2016). Identifikasi Patahan Mikro Penyebab Gempa Bumi Tarakan 21 Desember 2015. In Prosiding Seminar Nasional Fisika, V, SNF2016-EPA-79-SNF2016-EPA-84.https://doi.org/10.21009/0305020415">[Crossref]
Téllez-Quiñones, A., Salazar-Garibay, A., Valdiviezo-Navarro, J. C., Hernandez-Lopez, F. J., & Silván-Cárdenas, J. L. (2020). DInSAR method applied to dual-pair interferograms with Sentinel-1 data: a study case on inconsistent unwrapping outputs. International Journal of Remote Sensing, 41(12), 4664-4683.https://doi.org/10.1080/01431161.2020.1727056">[Crossref]
Téllez-Quiñones, A., Salazar-Garibay, A., Cruz-Sánchez, B. I., Carlos-Martínez, H., Valdiviezo-Navarro, J. C., & Soto, V. (2025). Three-Dimensional Ice-Flow Recovery from Ascending–Descending DInSAR Pairs and Surface-Parallel Flow Hypothesis: A Simplified Implementation in SNAP Software. Remote Sensing, 17(7), 1168. https://doi.org/10.3390/rs17071168">[Crossref]
Watkinson, I. M., & Hall, R. (2017). Fault systems of the eastern Indonesian triple junction: evaluation of Quaternary activity and implications for seismic hazards.https://doi.org/10.1144/sp441.8">[Crossref]
Witts, D., Hall, R., Nichols, G., & Morley, R. (2012). A new depositional and provenance model for the Tanjung Formation, Barito Basin, SE Kalimantan, Indonesia. Journal of Asian Earth Sciences, 56, 77-104.https://doi.org/10.1016/j.jseaes.2012.04.022">[Crossref]
Last update:
Last update: 2025-06-12 23:09:45