skip to main content

Post-Seismic Surface Deformation of The Tarakan Earthquake in 2015 Using The DInSAR Technique

*Imanuela Indah Pertiwi orcid scopus  -  Kendari Class IV Geophysical Station-Indonesian Agency of Meteorology, Climatology and Geophysics, Indonesia
Trismahargyono Trismahargyono  -  Center of Earthquake and Tsunami –Indonesian Agency of Meteorology, Climatology and Geophysics, Indonesia
Marniati Marniati  -  Makassar Region IV Meteorology, Climatology, and Geophysics Center-Indonesian Agency of Meteorology, Climatology and Geophysics, Indonesia
Joshua Purba  -  Kendari Class IV Geophysical Station-Indonesian Agency of Meteorology, Climatology and Geophysics, Indonesia

Citation Format:
Abstract
Deformation can help predict the presence and severity of an earthquake. SAR image data can be used to calculate post-seismic surface deformation using the InSAR and DInSAR methods. DInSAR (Differential Interferometric Synthetic Aperture Radar) is a well-established technology for monitoring subsidence and uplift with high millimeter precision. In this study, SAR imagery is used to detect surface deformation caused by an earthquake of magnitude M 6.1 on December 21, 2015, at 01:47:37 WIB in Tarakan Regency, North Borneo. The data used is Sentinel-1 satellite imagery data in single-look complex (SLC) format, which consists of a master picture acquired on December 18, 2015 (3 days before the major earthquake) and a slave image recorded on January 11, 2016 (21 days after the major earthquake). The interferogram created by the Tarakan earthquake on December 21, 2015, spun around the main earthquake in three directions: north-east, southeast-southwest, and southwest-northwest. Tarakan City, located south-southwest of the epicenter, saw the highest subsidence deformation of 0,001-0,035 meters. On December 21, 2015, the Tana Tidung I Regency area, 33 kilometers southwest of the Tarakan earthquake epicenter, saw the highest uplift deformation (0,019-0,079 meters). The largest uplift deformation in Tana Tidung II Regency (0,069 meters), where the Tarakan earthquake occurred, is 10 kilometers north of the epicenter. The surface deformation values due to the Tarakan earthquake provide information on the seismic hazard in the North Borneo and provide evidence of other locally active faults. The uplift deformation that occurred to the east of the epicentre and the subsidence deformation that occurred to the west of the epicentre represent that the fault characteristics that caused the Tarakan earthquake were oblique-normal faults with strike-slip fault movements dominating, and normal (downward) fault blocks located to the west.
Fulltext
Keywords: SAR imagery, DinsSAR, deformation, subsidence, uplift, fault

Article Metrics:

  1. Alejandro, Téllez-Quiñones., Adán, Salazar-Garibay., Juan, C., Valdiviezo-Navarro., Francisco, J., Hernandez-Lopez & José, L. Silván-Cárdenas., (2020). DInSAR Method Applied to Dual-Pair Interferograms with Sentinel-1 Data: A Study Case on Inconsistent Unwrapping Outputs. International Journal of Remote Sensing 41 (12), 4662-4681 doi: 10.1080/01431161.2020.1727056
  2. Agustan., Hanifa, R. H., Anantasena, Y., Sadly, M., and Ito, T., (2019). Ground Deformation Identification Related to 2018 Lombok Earthquake Series Based on Sentinel-1 Data. IOP Conf. Ser.: Earth Environ. Sci. 280 012004 doi: 10.1088/1755-1315/280/1/012004
  3. ASF HyP3 Sentinel-1 Burst InSAR Product Guide. URL https://hyp3-docs.asf.alaska.edu/hyp3-docs/guides/burst_insar_product_guide/
  4. Azhari, M. F., Karyanto., Rasimeng, S., and Mulyanto, B. S., (2020). Analysis of Surface Deformation Using DInSAR Method (Differential Interferometry Synthetic Aperture Radar) in Case Study Lombok Earthquake on August 2018. Jurnal Geofisika Eksplorasi 6 (2) 131-144
  5. Balaguru, E., Nichols, G., Hall, R., (2003). The origin of the ‘circular basins’ of Sabah, Malaysia
  6. Bulletin of the Geological Society of Malaysia 46 335-351
  7. Bedini., E., (2020). Persistent Scatterer Interferometry of Sentinel-1 Time Series to Detect Ground Subsidence in The City of Recife, Brazil. Journal of Hyperspectral Remote Sensing 10 (1):1
  8. BMKG Data Catalog. URL https://bmkg.go.id
  9. Cahyaningrum, A. P., (2024). Analisis Deformasi Berbasis Citra SAR. Pelatihan Teknis Analisis Data Science BMKG
  10. Calvet, A., Balbarani, S., Gende, M., (2023). DInSAR coseismic deformation measurements of the Mw 8.3 Illapel earthquake (Chile). Journal of Geodetic Science 13
  11. Campbell, J. B., and Wynne, R. H., (2011). Introduction to Remote Sensing (5 ed.). The Guilford Press
  12. Castaneda, C., Pourthie´, N., and Souyris, J-C., (2011). Dedicated SAR interferometric analysis to detect subtle deformation in evaporite areas around Zaragoza, NE Spain. International Journal of Remote Sensing 32 (7) 1861–1884 doi: 10.1080/01431161003631584
  13. Center of Earthquake and Tsunami BMKG., (2016). Buletin Gempabumi dan Tsunami Indonesia Tahun 2015. Book ISSN: 2477 – 0035
  14. Erdi, A., Jackson, C. A-L., Soto, J. I., (2022). Extensional deformation of a shale-dominated delta: Tarakan Basin, offshore Indonesia. Basin Research 1-31 DOI: 10.1111/bre.12747
  15. European Space Agency (ESA)., (2021). Sentinel-1 Toolbox: TOPS Interferometry Tutorial
  16. Fahrland, E., Pasco, H., Jacob, P., Kahabka, H., (2022). Copernicus digital elevation model product handbook, airbus defense and space GmbH 2.1
  17. Global Centroid-Moment Tensor Catalog Web Search. URL https://www.globalcmt.org/CMTsearch.html
  18. Goldstein, R. M., Howard, A. Z., and Charles, L.W., (1988). Satellite Radar Interferometry: Two-dimensional phase unwrapping. Radio Science 23 (4) 713-720
  19. Gorsel, J. T. V., (2018). Bibliography of the Geology of Indonesia and Surrounding Areas, IV. Borneo (incl. Makassar Straits) 7.0. www.vangorselslist.com
  20. Gourmelen, N., Amelung, F., and Lanari, R., (2010). Interferometric Synthetic Aperture Radar–GPS Integration: Interseismic Strain Accumulation Across The Hunter Mountain Fault in The Eastern California Shear Zone. Journal of Geophysical Research: Solid Earth 115 (B9)
  21. Gurpinar, A., Serva, L., Livio, F., and Rizzo, P. C., (2017). Earthquake-Induced Crustal Deformation and Consequences for Fault Displacement Hazard Analysis of Nuclear Power Plants. Nuclear Engineering and Design 311 69-85
  22. Hall, R., (2013). Contraction and extension in northern Borneo driven by subduction rollback. Journal of Asian Earth Sciences 76 399–411 https://doi.org/10.1016/j.jseaes.2013.04.010
  23. Hall, R., (2019). The subduction initiation stage of the Wilson cycle. In Wilson, R. A., Houseman, G. A., McCaffrey, K. J. W., Doré, A. G., & Buiter, S. J. H. (Eds.), Fifty years of the Wilson cycle concept in plate tectonics 470 415–437 https://doi.org/10.1144/SP470.3
  24. Hendardi, R. P., Hidajat, W. K., Setyawan, R., Qadaryati, A. K. N., Khorniawan, W. B., Dalimunte, H. L., Ringga, G., (2024). Evaluation of Reservoir Characteristics of Wells X, Y, Z in the Pliocer Interval of the Tarakan Sub-Basin, Tarakan Basin, North Kalimantan. Journal of Applied Geology 9 (2) 122-138
  25. Hogenson, K., Kristenson, H., Kennedy, J., Johnston, A., Rine, J., Logan, T., Zhu, J., Williams, F., Herrmann, J., Smale, J., and Meyer, F., (2020). Hybrid Pluggable Processing Pipeline (HyP3): A cloud-native infrastructure for generic processing of SAR data [Computer software]. URL https://doi.org/10.5281/zenodo.4646138
  26. Indonesia Geospasial: Sistem Informasi Geografi dan Penginderaan Jauh., (2020). Shapefile (SHP) Geologi Provinsi Borneo Utara. URL https://www.indonesia-geospasial.com/2020/03/download-data-shapefile-shp-geologi-se.html
  27. Islam, L. J. F., Prasetyo, Y., and Sudarsono, B., (2017). Analisis Penurunan Muka Tanah (Land Subsidence) Kota Semarang Menggunakan Citra Sentinel-1 Berdasarkan Metode DInSAR Pada Perangkat Lunak Snap. Jurnal Geodesi Undip 6 (2) 29-36
  28. Jaya, L. G. M., Hasria., Simatupang, M., Kadir, A., Saleh, F., (2021). Using DInSAR to Map Ground Deformation on Road Infrastructure (Case Study: North Buton, Southeast Sulawesi). IOP Conf. Ser.: Earth Environ. Sci. 871 012049 doi: 10.1088/1755-1315/871/1/012019
  29. Jiang, X., Min, X., Ye, T., Li, X., Hu, X., (2023). Monitoring the Subsidence at Different Periods in High UndergroundWater Level Coal Mine Areas Using Differential Interferometric Synthetic Aperture Radar (D-InSAR). Geocarto Int. 38 2215730
  30. Kurniawan, R., and Anjasmara, I. M., (2016). Pemanfaatan Metode Differential Interferometry Synthetic Aperture Radar (DInSAR) untuk Pemantauan Deformasi Akibat Aktivitas Eksploitasi Panasbumi. Jurnal Teknik ITS 5 (2) 331-336
  31. Lu, C-H., Huang, S-Y., Hsu, Y-C., Yen, I-C., Tung, H., Kuo, Y-T., (2025). Fast report: the 2025 M6.4 Dapu earthquake: preliminary field observation and surface deformation analysis. Terrestrial, Atmospheric and Oceanic Sciences 36 (14) https://doi.org/10.1007/s44195-025-00099-5
  32. Manconi, A., (2021). How Phase Aliasing Limits Systematic Space-Borne DInSAR Monitoring and Failure Forecast of Alpine Landslides. Eng. Geol. 287 106094
  33. Metcalfe, I., (2017). Tectonic Evolution of Sundaland. Bulletin of The Geological Society of Malaysia 63 27-60
  34. Monika., Govil, H., Guha, S., (2023). Underground Mine Deformation Monitoring Using Synthetic Aperture Radar Technique: A Case Study of Rajgamar Coal Mine of Korba Chhattisgarh, India. J. Appl. Geophys. 209 104899
  35. Nasa’s Earth Science Data System (ESDS). https://www.earthdata.nasa.gov/
  36. National Center for Earthquake Studies., (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman
  37. North Borneo Regional Disaster Management Agency. URL https://kaltim.tribunnews.com
  38. Panuntun, H., Miyazaki, S., Fukuda, Y., and Orihara, Y., (2018). Probing the Poisson’s ratio of Poroelastic Rebound Following the 2011 Mw 9.0 Tohoku Earthquake. Geophysical Journal International 215 (3) 2206-2221 doi: 10.1007/s11069-020-04120-7
  39. Permana, A. K., Sendjadja, Y. A., Panggabean, H., Fauzely, L., (2018). Depositional Environment and Source Rocks Potential of the Miocene Organic Rich Sediments, Balikpapan Formation, East Kutai Sub Basin, Kalimantan. Jurnal Geologi dan Sumberdaya Mineral 19 (3) 171-186 http://dx.doi.org/10.33332/jgsm.geologi.19.3.171-186
  40. Petersen, M.D., Dawson, T.E., Chen, R., Cao, T., Wills, C.J., Schwartz, D.P., and Frankel, A.D., (2011). Fault displacement hazard for strike-slip faults. Bull. Seismol. Soc. Am. 101 (2), 805–825
  41. Purba, J., Harisma., Priadi, R., Amelia, R., Dwilyantari, A. A. I., Jaya, L. M. G., Restele, L. O., Putra, I. M. W. G., (2024). Surface deformation and its implications for land degradation after the 2021 Flores earthquake (M7.4) using differential interferometry synthetic aperture radar. Journal of Degraded and Mining Lands Management 12 (1) 6819-6831 doi: 10.15243/jdmlm.2024.121.6819
  42. Purba, S. M., Alyssa, Y. F., Nadia, M., Asra, N., Muksin, U., (2025). The Influence of Seismometer Coverage on the Earthquake Focal Mechanism Solution (Case Study: Toba Swarm Earthquake). IOP Conf. Series: Earth and Environmental Science 1479 012014 doi: 10.1088/1755-1315/1479/1/012014
  43. Sari, A. R., Handayani, H. H., Agustan., (2014). Penerapan Metode DInSAR Untuk Analisa Deformasi Akibat Gempabumi Dengan Validasi Data GPS Sugar (Studi Kasus: Kepulauan Mentawai, Sumatera Barat). Journal of Geodesy and Geomatics 10 (1) 26-31
  44. Sriyanto, S. P. D., Ifantyana, I., (2016). Identifikasi Patahan Mikro Penyebab Gempabumi Tarakan 21 Desember 2015. Prosiding Sminar Nasional Fisika 5 doi: 10.21009/0305020415
  45. Tellez-Quinones, A., Salazar-Garibay, A., Cruz-Sanchez, B. I., Carlos-Martinez, H., Valdiviezo-Navarro, J. C., Soto, V., (2025). Three-Dimensional Ice-Flow Recovery from Ascending-Descending DInSAR Pairs and Surface-Parallel Flow Hypothesis: A Simplified Implementation in SNAP Software. Remote Sens. 17 (7) 1168 https://doi.org/10.3390/rs17071168
  46. Trismahargyono., Puspita, A., Pertiwi, I. I., Agustan, Sinki, K. P., (2024). Surface Deformation Analysis Due to the Poso Earthquake on May 29, 2017 Using The DInSAR Method. IOP Conf. Ser.: Earth Environ. Sci. 1373 012049 doi: 10.1088/1755-1315/1373/1/012049
  47. van de Weerd, A. A., and Armin, R. A., (1992). Origin and Evolution of the Tertiary Hydrocarbon Bearing Basins in Borneo (Borneo), Indonesia. American Association of Petroleum Geologists Bulletin 76 (11) 1778-1803
  48. Watkinson, I. M., Hall, R., (2017). Fault systems of the eastern Indonesian triple junction: Evaluation of quaternary activity and implications for seismic hazards. In P. R. Cummins & I. Meilano (Eds.), Geohazards in Indonesia: Earth science for disaster risk reduction 441 71–120 https://doi.org/10.1144/SP441.8
  49. Witts, D., Hall, R., Nichols, G., Morley, R., (2012). A new depositional and provenance model for the Tanjung Formation, Barito Basin, Southeast Kalimantan, Indonesia. Journal of Asian Earth Sciences 56 77-104

Last update:

No citation recorded.

Last update: 2025-05-22 17:10:25

No citation recorded.