skip to main content

Empirical evidence of environmental degradation using geospatial technology in Tasik Temenggor, Royal Belum Perak, Malaysia

*Siti Aekbal Salleh orcid scopus publons  -  School of Geomatics Science and Natural Resources, College of Built Environment, Universiti Teknologi MARA, 40450 Selangor, Malaysia., Malaysia
Kamilia Kamaruzzaman  -  3DTech Parametric Sdn Bhd, Menara Uncang Emas, 3, Taman Miharja, 55200 Kuala Lumpur, Malaysia., Malaysia

Citation Format:
Abstract

Freshwater lakes are vital ecosystems that play a crucial role in maintaining biodiversity, providing essential ecosystem services, and supporting human well-being. Nevertheless, Tasik Temenggor's ecosystem faces severe pressure from human activities such as land reclamation, habitat deterioration, and eutrophication. However, these complex interactions remain poorly understood. Thus, this study aims to identify the factors associated with environmental degradation, specifically focusing on climatic and meteorological parameters as well as analyze their temporal changes through a spatio-temporal analysis. The objective of this study is i) to identify significant variables, ii) to quantify the factors of environmental degradation and iii) to determine environmental degradation with spatio-temporal analyses. This study was carried out after defining the research questions and objectives and completing systematic literature review to find the significant variable for the study. Spatial data such as NDVI, LST, LULC and water quality were produced through image pre-processing and supervised classification. Subsequently, environmental datasets were combined, weights were assigned to variables using Principal Components tools in ArcGIS Pro, and the Weighted Overlay Analysis tool was used to create maps of environmental degradation. The results were analyzed, producing maps that show the level of environmental degradation in Tasik Temenggor over the years. The final output shows variations in the surrounding environment, with 2015 presenting primarily ‘Very Good’ conditions, indicating minimal degradation. Additionally, there were develops in ‘Good’ regions and moderate decline in other areas in 2020. Finally, while ‘Very Good’ conditions persisted, rises in the ‘Poor’ and ‘Very Poor’ categories indicated local degradation, particularly in developed and barren land areas for 2024. To conclude, this study demonstrated the application of geospatial technology in monitoring and assessing environmental degradation in Tasik Temenggor. The developed methodology can be used in similar studies, offering a comprehensive understanding and management of environmental conditions and sustainability.

Fulltext
Keywords: Freshwater lakes; Geospatial techniques; Principal component analysis; Spatio-temporal analysis; Weighted overlay
Funding: the Universiti Teknologi MARA Matching Grant Scheme 600-TNCPI 5/3/DDN (10) (003/2023).

Article Metrics:

  1. Abd Razak, M. F., Osnin, N. A., Rahman, N. S. F. A., Hamid, S. A., Kader, A., & Saman, A. (2017). Safety Assessment of Passenger Boat and Houseboat at Temenggor Lake, Malaysia. Insight, 11
  2. Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., Winemiller, K. O., & Ripple, W. J. (2020). Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio, 50(1), 85–94. https://doi.org/10.1007/s13280-020-01318-8
  3. Arshad, N., Rahman, A. T. A., Jafar, S. M., Aziz, N. W., & Osman, R. (2022). Assessment of water quality in the Temenggor Forest Reserve based on physicochemical data and elemental content. Malaysian Journal of Chemistry, 24(2), 1-11. https://doi.org/10.55373/mjchem.v24i2.1
  4. Godana, G., Fufa, F., & Debesa, G. (2022). Eichhornia crassipes expansion detection using geospatial techniques: Lake Dambal, Oromia, Ethiopia. Environmental Challenges, 9, 100616. https://doi.org/10.1016/j.envc.2022.100616
  5. Ho, L. T., & Goethals, P. L. M. (2019). Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water, 11(7), 1462. https://doi.org/10.3390/w11071462
  6. Isa, N. A., Mohd, W., Salleh, S. A., & Ooi, M. C. G. (2018). The effects of green areas on air surface temperature of the Kuala Lumpur city using WRF-ARW modelling and Remote Sensing technique. IOP Conference Series Earth and Environm ental Science, 117, 012012–012012. https://doi.org/10.1088/1755-1315/117/1/012012
  7. Joorabian Shooshtari, S., & Jahanishakib, F. (2024). Estimating the severity of landscape degradation in future management scenarios based on modeling the dynamics of Hoor Al-Azim International Wetland in Iran-Iraq border. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-62649-0
  8. Kamaruzzaman, K., Salleh, S. A., Pardi, F., Abdullah, M. F., Foronda, V., Bergonio, E. L., & Rahmawaty, R. (2025). Review of environmental monitoring in freshwater lakes using geospatial techniques (remote sensing and GIS). Geocarto International, 40(1). https://doi.org/10.1080/10106049.2024.2448978
  9. Karim, M., Deng, J., Ayoub, M., Dong, W., Zhang, B., Yousaf, M. S., Bhutto, Y. A., & Ishfaque, M. (2023). Improved Cropland Abandonment Detection with Deep Learning Vision Transformer (DL-ViT) and Multiple Vegetation Indices. Land, 12(10), 1926. https://doi.org/10.3390/land12101926
  10. Kowe, P., Ncube, E., Magidi, J., Ndambuki, J. M., Rwasoka, D. T., Gumindoga, W., Maviza, A., de jesus
  11. Paulo Mavaringana, M., & Kakanda, E. T. (2023). Spatial-temporal variability analysis of water quality using remote sensing data: A case study of Lake Manyame. Scientific African, 21, e01877. https://doi.org/10.1016/j.sciaf.2023.e01877
  12. Kumar, B. P., Babu, K. R., Anusha, B. N., & Rajasekhar, M. (2022). Geo-environmental monitoring and assessment of land degradation and desertification in the semi-arid regions using Landsat 8 OLI / TIRS, LST, and NDVI approach. Environmental Challenges, 8, 100578. https://doi.org/10.1016/j.envc.2022.100578
  13. Liu, S., Li, X., Chen, D., Duan, Y., Ji, H., Zhang, L., Chai, Q., & Hu, X. (2020). Understanding Land use/Land cover dynamics and impacts of human activities in the Mekong Delta over the last 40 years. Global Ecology and Conservation, 22, e00991. https://doi.org/10.1016/j.gecco.2020.e00991
  14. Martinsen, K. T., & Sand-Jensen, K. (2022). Predicting water quality from geospatial lake, catchment, and buffer zone characteristics in temperate lowland lakes. Science of The Total Environment, 851, 158090. https://doi.org/10.1016/j.scitotenv.2022.158090
  15. Muchini, R., Gumindoga, W., Togarepi, S., Masarira, T. P., & Dube, T. (2018). Near real time water quality monitoring of Chivero and Manyame lakes of Zimbabwe. Proceedings of the International Association of Hydrological Sciences, 378, 85–92. https://doi.org/10.5194/piahs-378-85-2018
  16. Nagy, A., Szabó, A., Adeniyi, O. D., & Tamás, J. (2021). Wheat Yield Forecasting for the Tisza River Catchment Using Landsat 8 NDVI and SAVI Time Series and Reported Crop Statistics. Agronomy, 11(4), 652. https://doi.org/10.3390/agronomy11040652
  17. Nisar, A. ., Mahmood, S., & Shakoor, M. . (2023). Spatio-temporal analysis of snow cover change in Hunza Valley, Karakoram Region. Advanced Remote Sensing, 3(2), 58–68. Retrieved from https://publish.mersin.edu.tr/index.php/arsej/article/view/984
  18. Pratama, M. R. A., Manessa, M. D. M., Supriatna, S., Ayu, F., & Haidar, M. (2022). Spatial Distribution of Coral Reef Degradation with Human Activities in the Coastal Waters of Samatellu Lompo Island, South Sulawesi. Geoplanning: Journal of Geomatics and Planning, 9(2), 121–132
  19. https://doi.org/10.14710/geoplanning.9.2.121-132
  20. Qin, X., Yang, Q., & Wang, L. (2024). The evolution of habitat quality and its response to land use change in the coastal China, 1985–2020. Science of The Total Environment, 952, 175930. https://doi.org/10.1016/j.scitotenv.2024.175930
  21. Qiu, G. Y., Li, H. Y., Zhang, Q. T., Wan, C. H. E. N., Liang, X. J., & Li, X. Z. (2013). Effects of Evapotranspiration on Mitigation of Urban Temperature by Vegetation and Urban Agriculture. Journal of Integrative Agriculture, 12(8), 1307–1315. https://doi.org/10.1016/s2095-3119(13)
  22. Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M.-H. (2018). Emerging trends in global freshwater availability. Nature, 557(7707), 651–659. https://doi.org/10.1038/s41586-018-0123-1
  23. Salleh, S. A., Latif, Z. A., Chan, A., Morris, K. I., Ooi, M. C. G., & Mohd, W. M. N. W. (2015). Weather Research Forecast (WRF) modification of land surface albedo simulations for urban Near Surface Temperature. 2015 International Conference on Space Science and Communication (IconSpace), 243–247. https://doi.org/10.1109/iconspace.2015.7283787
  24. Salleh, S. A., Latif, Z. A., Pradhan, B., Wan Mohd, W. M. N., & Chan, A. (2013). Functional relation of
  25. land surface albedo with climatological variables: a review on remote sensing techniques and recent research developments. Geocarto International, 29(2), 147–163. https://doi.org/10.1080/10106049.2012.748831
  26. Shi, X., Mao, D., Song, K., Xiang, H., Li, S., & Wang, Z. (2024). Effects of landscape changes on water quality: A global meta-analysis. Water Research, 260, 121946. https://doi.org/10.1016/j.watres.2024.121946
  27. Tan, J., Yu, D., Li, Q., Tan, X., & Zhou, W. (2020). Spatial relationship between land-use/land-cover change and land surface temperature in the Dongting Lake area, China. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-66168-6
  28. Tibebe, D., Zewge, F., Lemma, B., & Kassa, Y. (2022). Assessment of spatio-temporal variations of selected water quality parameters of Lake Ziway, Ethiopia using multivariate techniques. BMC Chemistry, 16(1). https://doi.org/10.1186/s13065-022-00806-0
  29. Topp, S. N., Pavelsky, T. M., Jensen, D., Simard, M., & Ross, M. R. V. (2020). Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving Towards Multidisciplinary Applications. Water, 12(1), 169. https://doi.org/10.3390/w12010169
  30. Tran, H., Tran, T., & Kervyn, M. (2015). Dynamics of Land Cover/Land Use Changes in the Mekong Delta, 1973–2011: A Remote Sensing Analysis of the Tran Van Thoi District, Ca Mau Province, Vietnam. Remote Sensing, 7(3), 2899–2925. https://doi.org/10.3390/rs70302899
  31. Wei, W., Gao, Y., Huang, J., & Gao, J. (2020). Exploring the effect of basin land degradation on lake and reservoir water quality in China. Journal of Cleaner Production, 268, 122249. https://doi.org/10.1016/j.jclepro.2020.122249
  32. Xie, G., & Niculescu, S. (2021). Mapping and Monitoring of Land Cover/Land Use (LCLU) Changes in the Crozon Peninsula (Brittany, France) from 2007 to 2018 by Machine Learning Algorithms (Support Vector Machine, Random Forest, and Convolutional Neural Network) and by Post-classification Comparison (PCC). Remote Sensing, 13(19), 3899. https://doi.org/10.3390/rs13193899
  33. Yu, Z., Chen, J., Chen, J., Zhan, W., Wang, C., Ma, W., Yao, X., Zhou, S., Zhu, K., & Sun, R. (2024). Enhanced observations from an optimized soil-canopy-photosynthesis and energy flux model revealed evapotranspiration-shading cooling dynamics of urban vegetation during extreme heat. Remote Sensing of Environment, 305, 114098. https://doi.org/10.1016/j.rse.2024.114098
  34. Zhou, J., Leavitt, P. R., Zhang, Y., & Qin, B. (2022). Anthropogenic eutrophication of shallow lakes: Is it occasional? Water Research, 221, 118728. https://doi.org/10.1016/j.watres.2022.118728

Last update:

No citation recorded.

Last update: 2025-10-31 18:01:50

No citation recorded.