1Yayasan Biodiversitas Indonesia, Indonesia
2Conservation International, Indonesia
3Department of Ecology and Evolutionary Biology, University of California, United States
4 Faculty of Marine Science, Udayana University, Indonesia
BibTex Citation Data :
@article{IK.IJMS22008, author = {Ni Putu Pertiwi and Nur Hidayat and Chloe Henderson and I Nyoman Putra and Andrianus Sembiring}, title = {Redefining Dispersal Boundaries of Siganus fuscescens In The Coral Triangle Area}, journal = {ILMU KELAUTAN: Indonesian Journal of Marine Sciences}, volume = {24}, number = {1}, year = {2019}, keywords = {Indonesia; genetic; Siganus sp.}, abstract = { The increasing demand of fish in the Coral Triangle Area has led to overexploitation of some species of fishes. One of the commercial fishes, which is also known to be the source of food and income for local communities, is the Mottled Spinefoot (Siganus fuscescens). Population studies on this species are important in order to manage sustainable stock populations. Genetic variation of the mitochondrial DNA was analyzed to examine the population structure of Siganus fuscescens in Indonesia, as part of the Coral Triangle Area. In total, 789 basepairs of control region mtDNA sequences were determined from 133 specimens collected from six localities, including Seribu Islands (n=27), Karimunjawa (n=19), Komodo (n=39), Selayar (n=20), Lembeh (n=19) and Luwuk (n=9). From the data, 27 variable sites and 24 haplotypes were detected, with most of the haplotypes unique to each location. Haplotype data show that one haplotype was shared among all populations, three haplotypes were shared between two populations (Komodo & Selayar; Lembeh & Seribu; Komodo & Karimunjawa), and 20 were unique to a single population. Haplotype diversity (h=0.444) and nucleotide diversity (π=0.00165) were low. The diversity result, i.e. the Φ ST value (0.0658, P < 0.0001) revealed genetic structure in S. fuscescens populations in Indonesia. A non-dispersal strategy led to restricted gene flow and genetic structuring in S. fuscescens. However, both the neutrality test and the mismatch distribution indicated that S. fuscescens might have been in populations at demographic equilibrium, with restriction to the population expansion. Although indicating unexpected minor population structure pattern, the overall result still suggest the management of this species population as a single unit across Indonesia . }, issn = {2406-7598}, pages = {31--40} doi = {10.14710/ik.ijms.24.1.31-40}, url = {https://ejournal.undip.ac.id/index.php/ijms/article/view/22008} }
Refworks Citation Data :
The increasing demand of fish in the Coral Triangle Area has led to overexploitation of some species of fishes. One of the commercial fishes, which is also known to be the source of food and income for local communities, is the Mottled Spinefoot (Siganus fuscescens). Population studies on this species are important in order to manage sustainable stock populations. Genetic variation of the mitochondrial DNA was analyzed to examine the population structure of Siganus fuscescens in Indonesia, as part of the Coral Triangle Area. In total, 789 basepairs of control region mtDNA sequences were determined from 133 specimens collected from six localities, including Seribu Islands (n=27), Karimunjawa (n=19), Komodo (n=39), Selayar (n=20), Lembeh (n=19) and Luwuk (n=9). From the data, 27 variable sites and 24 haplotypes were detected, with most of the haplotypes unique to each location. Haplotype data show that one haplotype was shared among all populations, three haplotypes were shared between two populations (Komodo & Selayar; Lembeh & Seribu; Komodo & Karimunjawa), and 20 were unique to a single population. Haplotype diversity (h=0.444) and nucleotide diversity (π=0.00165) were low. The diversity result, i.e. the ΦST value (0.0658, P < 0.0001) revealed genetic structure in S. fuscescens populations in Indonesia. A non-dispersal strategy led to restricted gene flow and genetic structuring in S. fuscescens. However, both the neutrality test and the mismatch distribution indicated that S. fuscescens might have been in populations at demographic equilibrium, with restriction to the population expansion. Although indicating unexpected minor population structure pattern, the overall result still suggest the management of this species population as a single unit across Indonesia.
Article Metrics:
Last update:
De Novo Assembly and Annotation of the Siganus fuscescens (Houttuyn, 1782) Genome: Marking a Pioneering Advance for the Siganidae Family
Last update: 2024-11-21 04:02:20
Copy this form and after filling it, please send it to ijms@live.undip.ac.id:
COPYRIGHT TRANSFER STATEMENT
When this article is accepted for publication, its copyright is transferred to ILMU KELAUTAN Indonesian Journal of Marine Sciences, UNDIP. The copyright transfer covers the non exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this article is original and that the author has full power to publish. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. In regard to all kind of plagiarism in this manuscript, if any, only the author(s) will take full responsibility. If the article is based on or part of student’s skripsi, thesis or dissertation, the student needs to sign as his/her agreement that his/her works is going to be published.
Title of article :...........................................................................................................................Name of Author(s) :...........................................................................................................................Author’s signature :...........................................................................................................................Date :...........................................................................................................................
View My Stats
rajajp188
klikjp
https://klik4dx.id/
raffi88
mawar4d
bangbos
mpo1212
scatter hitam
22crown
slot server thailand
Raffi 888