Oral Administration of Alginate Oligosaccharide from Padina sp. Enhances Tolerance of Oxygen Exposure Stress in Zebrafish (Danio rerio)

*Ervia Yudiati  -  Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
Rustadi Rustadi  -  Department of Fisheries, Universitas Gadjah Mada University, Indonesia
Fanny Iriany Ginzel  -  Faculty of Fisheries and Marine Science, Artha Wacana Christian University, Indonesia
Jelita Rahma Hidayati  -  Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
Mila Safitri Rizfa  -  Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
Nuril Azhar  -  Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
Muhammad Salauddin Ramadhan Djarod  -  Laboratory of Tropical Marine Biotechnology, Diponegoro University, Indonesia
Eny Heriyati  -  Marine Science Program Study, Kutai Timur Agricultural College, Indonesia
Rabia Alghazeer  -  Department of Chemistry, Faculty of Sciences, University of Tripoli, Libya
Received: 10 Jan 2020; Revised: 2 Feb 2020; Accepted: 21 Feb 2020; Published: 8 Mar 2020; Available online: 8 Mar 2020.
Open Access License URL: http://creativecommons.org/licenses/by-nc-sa/4.0

Citation Format:
Abstract

Alginate is rich in bioactive compounds and has been known to act as a stimulator on the innate immune system. The objective of this study is to determine polysaccharide and oligosaccharide alginate yield, that percentage inhibition with a different type of extraction, to evaluate growth performance as well as immune response by oxygen stress tolerance. Thermal heating with oven laboratory at 140oC for 4.5 hr was done to breakdown the polysaccharide into oligosaccharide. The extraction was conducted by maceration, filtration, precipitation, and centrifugation. Factorial design with two factors was implemented to 260 Zebrafish and reared in thirteen aquariums (20 fish per aquarium) for 12 days. Zebrafish was fed at different dose (4.0g; 6.0g; 8.0g.kg-1) and different type of extraction [noEDTA/noKCl; KCl; EDTA and (EDTAandKCl)]. The evaluation of radical scavenging activity was done spectrophotometrically at 515 nm. Results showed that the highest alginate yield either polysaccharide or oligosaccharide was gained from KCL treatments, percentage inhibition (82.61%), growth performance as well as tolerance of stress (P<0.05). The best growth performance was reached in oligosaccharide supplementation at 6.0g.kg-1 treatment. It can be concluded that alginate oliogosaccharide produced by thermal heating enhanced the antioxidant activity, boost the fish’s immune system, proofed by better growth performance and more tolerant to the low oxygen stress.

Keywords: Alginate; Padina sp.; Zebrafish; Stress Tolerance
Funding: Ministry of Research and Higher Education Republic Indonesia

Article Metrics:

  1. Banerjee, A., Dasgupta, N., & De, B. 2005. In vitro study of antioxidant activity of Syzigium cumini fuit. Food Chem., 904(4):727-733. https://doi.org/10.1016/j.foodchem.2004.04.033
  2. Burr, G., Hume, M., Ricke, S., Nisbet, D. & Gatlin, D. 2010. In vitro and in vivo evaluation of the prebiotics Grobiotic®-A, inulin, mannanoligo-saccharide, and galactooligosaccharide on the digestive microbiota and performance of hybrid striped bass (Morone chrysops × Morone saxatilis). Microb. Ecol. 59: 187-198. https://doi.org/10.1007/s00248-009-9597-6
  3. Falkeborg, M., Cheong, L.Z., Gianfico, C., Sztukiel, K.M., Kristensen, K., Glasius, M., Xu, X. & Guo, Z. 2014. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem., 164: 185-194. https://doi.org/10.1016/j.foodchem.2014.05.053
  4. Fawzy, M.A., Gomaaa, M., Hifney, A.F., & Abdel-Gawed K.M. 2017. Optimization of Alginate Alkaline Extraction Technology From Sargassum Latifolium and its Potential Antioxidant and Emulsifying Properties. Carbohydr. Plymer., 157 (10): 1903-1912. https://doi.org/10.1016/j.carbpol.2016.11.077
  5. Hidayati, J.R., Yudiati, E., Pringgenies, D., Arifin, Z., & Oktaviyanti, D.T. 2019. Antioxidant Activities, Total Phenolic Compoubd and Pigment Contents on Tropical Sargassum sp. Extract, Macerated in Different Solvents Polarity. J. Kelautan Tropis, 22(1):73-80. https://doi.org/10.14710/jkt.v22i1.4404
  6. Hifney, A.F., Fawzy, M.A., Abdel-Gawad, K.M., & Gomaa, M. 2018. Upgrading The Antioxidant Properties of Fucoidan and Alginate From Cystoseira Trinodis by Fungal Fermentation or Enzymatic Pretreatment of The Seaweed Biomass, Food Chem. 269:387-395. https://doi.org/10.1016/j.foodchem.2018.07.026
  7. Holme, H.K., Davidsen, A., Kristiansen, A., & Smirsod, O. 2008. Kinetics and mechanism of depolymerization of alginate and chitiosan in Aqueous Solution. Carbohydr. Polym., 73(4): 656-664. https://doi.org/10.1016/j.carbpol.2008.01.007
  8. Hoseinifar, S.H., Mirvaghefi, A., Amoozegar, M.A., Merrifield, D., & Ringø, E. 2015. In Vitro Selection of a synbiotic and in Vivo Evaluation on Intestinal Microbiota, Performance and Physiological Response of Rainbow Trout (Oncorhynchus mykiss) fingerlings. Aquacult. Nutr, 23: 111-118. https://doi.org/10.1111/anu.12373
  9. Hoseinifar, S.H., Zoheiri, F., Dadar, M., Rufchaei, R., & Ringø, E. 2016. Dietary Galactooligosaccharide elicits Positive Effects on non-Specific Immune Parameters and Growth Performance in Caspian White Fish (Rutilus frisii kutum) Fry. Fish Shellfish Immunol, 56: 467-472. https://doi.org/10.1016/j.fsi.2016.08.001
  10. Isnansetyo, A., Irpani, H.M., Wulansari, T.A., & Kasanah, N. 2014. Oral administration of alginate from a tropical brown seaweed, Sargassum sp. to enhance non-spesific defense in walking catfish (Clarias sp.). Aquac Indones, 15(1): 14-20. https://doi.org/10.21534/ai.v15i1.29
  11. Jork, A., Thurmer, F., Cramer, H., Zimmermann, G., Gessne, P., Hamel, K., Hofmann, G., Kuttler, B., Hahn, H.J., Josimovic-Alasevic, O. & Fritsch, K.G. 2000. Biocompatible alginate from freshly collected Laminaria pallida for implantation. App. Microbiol. Biotechnol., 53: 224-229. https://doi.org/10.1007/s002530050012
  12. Kelishomi, Z.H., Goliaei B., Mahdavi, H., Nikofaar, A., Rahimi, M., Moosavi-Mohadevi A.A., Mamashi, F., & Bigdelli, B. 2016. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chem.,197: 897-902. https://doi.org/10.1016/j.foodchem.2015.09.091
  13. Kim, D.S., Lim, D.J., Moon, S.H.,Suh, H.H. & Park, Y.I. 2004. Purification of fucoidan from Korean sea tangle (Laminaria religosa) and isolation of fucoidan degrading microorganisms. Kor. J. Microbiol. Biotechnol, 32: 362-365
  14. Melo-Silveira, R. F., Fidelis, G.P., Viana, R.L.S., Soeiro, V.C., Silva, R.A.D., Machado, D., Costa, L.S., Ferreira, C.V. & Rocha, H.A.O. 2014. Antioxidant and Antiproliferative Activities of Methanolic Extract from a Neglected Agricultural Product: Corn Cobs. Molecules, (19): 5360-5378. https://doi.org/10.3390/molecules19045360
  15. Pawar, S.N., & Edgar, K.J. 2011. Chemical modification of alginates in organic solvent systems. Biomacromolecules, 12(4): 95-103. https://doi.org/10.1021/bm201152a
  16. Purbomartono, C., Isnansetyo., A., Murwantoko & Triyanto. 2019. Dietary Fucoidan from Padina boergesenii to Enhance Non-specific Immune of Catfish (Clarias sp.). J. Biolog. Sci. 19(2):173-180. https://doi.org/10.3923/jbs.2019.173.180
  17. Rahelivao, M.P., Andriamanantoanina,H., Heyraud, A. & Rinaudo, M. 2013. Structure and properties of three alginates from Madagascar seacoast algae. Food Hydrocolloids. 32: 143-146. https://doi.org/10.1016/j.foodhyd.2012.12.005
  18. Santos, H.M., Tsai, C.Y., Yanuaria, C.A.S., Tayo, L.L., Vo, D.D., Mariatulqabtiah, A.R., & Chuang, K.P. 2019. Effects of sodium alginate‐fed Pacific white shrimps, Litopenaeus vannamei, on Toll‐like receptors and Vibrio alginolyticus infection. Aquaculture Res., 2019: 1-9. https://doi.org/10.1111/are.13989
  19. Seo, S. B., Dananjaya, S.H.S., Nikapitiya, C., Park, B.K., Gooneratne, R., Kim, T.Y., Lee, J., Kim, C.H., & De Zoysa, M. 2017. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio). Fish Shellfish Immunol., 68: 536-545. https://doi.org/10.1016/j.fsi.2017.07.057
  20. Sudaryono, A., Chilmawati, D., & Susilowati, T., 2018. Oral Administration of Hot‐water Extract of Tropical Brown Seaweed, Sargassum cristaefolium, to Enhance Immune Response, Stress Tolerance, and Resistance of White Shrimp, Litopenaeus vannamei, to Vibrio parahaemolyticus. J. World Aquacul. Soc., 49(5): 877-888. https://doi.org/10.1111/jwas.12527
  21. Supamattaya, K., Kiriratnikom, S., Boonyaratpalin, M., & Borowitzka, L. 2005. Effect of Dunailella extract on growth performance, health condition, immune response and disease resistance in black tiger shrimp (Penaeus monodon). Aquaculture, 248: 207-216. https://doi.org/10.1016/j.aquaculture.2005.04.014
  22. Talpur, A.D., Munir, M.B., Mary, A., & Hashim, R. 2014. Dietary probiotics and prebiotics improved food acceptability, growth performance, haematology and immunological parameters and disease resistance against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aquaculture, 426: 14-20. https://doi.org/10.1016/j.aquaculture.2014.01.013
  23. Tassanakajon, A., Somboonwiwat, K., Supungul, P., & Tang, S. 2013. Discovery of immune molecules and their crucial functions in shrimp immunity. Fish Shellfish Immunol., 34(4):954-967. https://doi.org/10.1016/j.fsi.2012.09.021
  24. Yousefi, S., Hoseinifar, S.H., Paknejad, H., & Hajimoradloo, A. 2018. The effects of dietary supplement of galactooligosaccharide on innate immunity, immune related genes expression and growth performance in zebrafish (Danio rerio). Fish Shellfish Immunol., 73: 192-196. https://doi.org/10.1016/j.fsi.2017.12.022
  25. Yudiati, E., Isnansetyo, A., Murwantoko., Triyanto., Ayuningtyas., & Handayani, C.R. 2016. Innate immune-stimulating and immune genes upregulating activities of three types of alginate from Sargassum siliquosum in Pacific white shrimp, Litopenaeus vannamaei. Fish Shellfish Immunol., 54: 46-53. https://doi.org/10.1016/j.fsi.2016.03.022
  26. Yudiati, E., Santosa, G.W., Tontowi, M.R., Sedjati, S., Supriyantini, E., & Khakimah, M. 2018a. Optimization of alginate alkaline extraction technology from Sargassum polycystum and its antioxidant properties. IOP Conf. Ser.: Earth Environ. Sci. 139 012052 (1-13). https://doi.org/10.1088/1755-1315/139/1/012052
  27. Yudiati, E., Pringgenies, D., Djunaedi, A., Arifin, Z., & Sudaryono, A. 2018b. Free radical Scavenging of Low Molecular Weight Sodium Alginate (LMWSA) from Sargassum polycystum Produced by Thermal Treatment. Aquac. Ind., 19 (1): 21-27. https://doi.org/10.21534/ai.v19i1.121
  28. Yudiati, E., Isnansetyo., Murwantoko.,Triyanto. & Handayani, C.R. 2019. Alginate from Sargassum siliquosum Simultaneously Stimulates Innate Immunity, Upregulates Immune Genes, and Enhances Resistance of Pacific White Shrimp (Litopenaeus vannamei) Against White Spot Syndrome Virus (WSSV). Marine Biotechnol., 21: 503-514. https://doi.org/10.1007/s10126-019-09898-7

Last update: 2021-02-25 04:35:08

No citation recorded.

Last update: 2021-02-25 04:35:09

No citation recorded.