skip to main content

Improving Production, Chlorophyll a and Carotenoids Contents of Gracilaria sp. with Liquid Organic Fertilizer from Alginate Waste

1Department of Marine Science, Faculty of Fisheries and Marine Sciences, Diponegoro University, Indonesia

2University of Tripoli, Libya

Received: 30 Nov 2020; Revised: 25 Feb 2021; Accepted: 27 Feb 2021; Published: 7 Mar 2021; Available online: 8 Mar 2021.

Citation Format:
Abstract

Chlorophyll is a photosynthetic pigment, used in the food sector as a natural dye in food. Carotenoids is used in the health sector to prevent several disease in humans. The production and pigment contents are influenced by nutrient availability. The aim of this study was to increase the production of chlorophyll a and carotenoids contents in Gracilaria sp. Seaweed obtained from Demak aquaculture ponds, then cultivated in aquarium for 28 days.Alginate from Sargassum sp. waste fertilizer was prepared by adding some compounds, fermented by commercial Saccharomyces cerevisiae. Five different treatments (FB (basal formulation: 75 g alginate waste + 22.5mL molase + 7.5 g S. cerevisiae + 250 mL aquadest)), FBL (basal formulation+100% Lamtoro leaves), FBLU (basal formulation+50%Lamtoro leaves+50% carapace shrimp waste), FBU (Basal formulation + 100% carapace shrimp waste) and control-without fertilizer) was applied. Analysis of pigments was determined using the spectrophotometric method. The research design was CRD with 4 treatments and a control. Data were analyzed using Kruskal-Wallis statistical analysis. The result showed that fertilization in culture media could increase the production (DW) and pigment contents. The highest levels of dry weight, chlorophyll a and carotenoids (P<0.05) were resulted from FBLU ie. 6.58 ± 0.07g dry weight; 5.47 mg.L-1 and 0.16 µmol.L-1.The application of organic fertilizer from alginate extract waste to Gracilaria sp. culture media had a significant effect towards growth, dry weight, chlorophyll a and carotenoids pigments content. This inexpensive fertilizer expected to be the solution of green and zero waste management which provide the enviromentally friendly fertilizer.

Fulltext View|Download
Keywords: Alginate; Carotenoids; Chlorophyll a; Fertilizer; Gracilaria sp.

Article Metrics:

  1. Ahmad, S.H., Surif, M., Omar, W.M.W., Rosli,M.N.B. & Nor, A.R.M. 2011. Nutrient uptake, growth and chlorophyll content of green seaweed, Ulva reticulata: response to different source of inorganic nutrients. Proc. UMTAS: 542-548
  2. AOAC. 2005. Official methods of analysis of the asspciation of official analytical chemist. Benyamin Franklin station. Washingtong D.C
  3. Babadi, F.E., Boonnoun, P., Nootong, K., Powtongsook, S., Goto, M. & Shotipruk, A. 2020. Identification of carotenoids and chlorophylls fromgreen algae Chlorococcum humicola and extraction by liquefied dimethyl ether. Food and Bioproducts Processing. 123: 296-303. https://doi.org/10.1016/j.fbp.2020.07.008
  4. Basmal, J., Saputra, R., Karnila, R. & Leksono, T.J. 2019. Nutrient extraction from seaweed Sargassum sp. PB Kelaut. Perikan., 14(1): 63-74. https://doi.org/10.15578/jpbkp.v14i1.547
  5. Briggs, M.R.P. & Funge-Smith, S.J. 1993. Macroalga in aquaculture: an overview and their possible roles in shrimp culture. Proc. Mar. Biotech. Conference. Bangkok, Thailand
  6. Castellanos-Barriga, L.G., Santacruz-Ruvalcaba, F., Hernández-Carmona, G., Ramírez Briones, E. & Hernández-Herrera, R.M. 2017. Effect of seaweed liquid extracts from Ulvalactuca on seedlinggrowth of mung bean (Vigna radiata). J. Appl. Phycol., 29(5): 2479-2488. https://doi.org/10.1007/s10811-017-1082-x
  7. Chan, P.T. & Matanju, P. 2017. Chemical composition and physicochemical properties of tropical redseaweed, Gracilaria changii. Food Chem., 221: 302-310. https://doi.org/10.1016/j.foodchem.2016.10.066
  8. Denis, C., Morancais, M., Li, M., Deniaud, E., Gaudin, P., Wielgosz Collin, G.,Barnathan, G., Jaouen, P. & Fleurence, J. 2010. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem., 119: 913-917. https://doi.org/10.1016/j.foodchem.2009.07.047
  9. Dewi, E.N., Rianingsih, L. & Anggo, A.D. 2019. The addition of defferent starters on characteristics Sargassum sp. liquid fertilizer. Eart and Enviromental. Sci. 246: 1-9. https://doi.org/10.1088/1755-1315/246/1/012045
  10. Gross, J. 1991.Pigments In Vegetables: Chlorophylls and Carotenoids. An avi Book Van Nostrand Reinhold, New York. https://doi.org/10.1007/978-1-4615-2033-7_2
  11. Hernandez, H.R.M., Ruvalcaba, S.F., Hernandez, J.Z. & Armona, G.H. 2016. Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. J. Appl. Phycol., 28: 2549-2560. https://doi.org/10.1007/s10811-015-0781-4
  12. Ismail, M.M. & Osman,M.E.H. 2016. Seasonal fluctuation of photosynthetic pigments of most common red seaweeds species collected from Abu Qir, Alexandria, Egypt. Revista de Biología Marina y Oceanografía. 51(3): 515-525. https://doi.org/10.4067/S0718-19572016000300004
  13. Ji, R., Dong, G., Shi, W. & Min, J. 2017. Effects of liquid organic fertilizers on plant growth and rhizosphere soil characteristics of chrysanthemum. Sustainability 9(5): 841. https://doi.org/10.3390/su9050841
  14. Latique, S., Mounir, C.H. & Kaoua,M.El. 2013. Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgarisvar Paulista) under hydroponic system. European Sci. J., 9(30): 174-191
  15. Lobban, C.S. & Harrison, P. 1994. Seaweed ecology and physiology, 366 pp. Cambridge University Press, Cambridge
  16. Mamun, M.D., Kwon, S. & Kim, J.E. 2020. Evaluation of algal chlorophyll and nutrient relations and ratios along with trophic status, light regime in 60 Korean reservoirs. Sci. Total Environ., 741: 1-13. https://doi.org/10.1016/j.scitotenv.2020.140451
  17. Maoka, T. 2019. Carotenoids as natural functional pigments. J. Nat. Medicin. 74: 1-16. https://doi.org/10.1007/s11418-019-01364-x
  18. Mezzomo, N. & Ferreira, S.R. 2016. Carotenoids functionality, sources, and processing by supercritical technology: a review. J. Chem., 7: 1-16. https://doi.org/10.1155/2016/3164312
  19. Pareek, S., Sagar, N.A., Sharma, S., Kumar, V., Agarwal, T., González-Aguilar, G.A. & Yahia, E.M. 2018. Chlorophylls: chemistry and biological functions. Fruit Vegetab. Phytochem., 1: 269-278. https://doi.org/10.1002/9781119158042.ch14
  20. Sakthivel, R. & Devi, K.S. 2014. Evaluation of physiochemical properties, proximate and nutritional composition of Gracilaria edulis collected from palk bay. Food Chem., 174: 68-74. https://doi.org/10.1016/j.foodchem.2014.10.142
  21. Rosemary, T., Arulkumar, A., Paramasivam, S., Mondragon, A. & Miranda, J.M. 2019. Biochemical, micronutrient and physicochemical properties of the dried red seaweeds Gracilaria edulis and Gracilaria corticata. Molecules. 24:1-5. https://doi.org/10.3390/molecules24122225
  22. Sedjati, S., Pringgenies, D. & Fajri, M. 2020. Determination of the pigment content and antioxidant activity of the marine microalga Tetraselmis suecica. Jordan J. Biolog. Sci. 13(1): 55-58
  23. SNI. Standar Nasional Indonesia. 2013 No. 7904 Tentang Produksi Rumput Grasilaria (Gracilaria verrucosa) Dengan Metode Sebar di Tambak
  24. Suryaningrum, L.H. & Samsudin, R. 2020. Nutrient digestibility of green seaweed Ulva meal and the influence on growth performance of Nile tilapia (Oreochromis niloticus). Emirates J. Food Agricul., 32(7): 488-494. https://doi.org/10.9755/ejfa.2020.v32.i7. 2131
  25. Yousif, O.M., Osman, M.F., Anwahi, A.R., Zarouni, M.A. & Cherian, T. 2004. Growth response and carcass composition of rabbitfish, Siganus canaliculatus (Park) fed diets supplemented with dehydrated seaweed, Enteromorpha sp. Emir. J. Agric. Sci. 16(2): 18-26. https://doi.org/10.9755/ejfa.v12i1.5016
  26. Yudiati, E., Ridho, A., Nugroho, A.A., Sedjati, S. & Maslukah, L. 2020. Analisis Kandungan Agar, Pigmen dan Proksimat Rumput Laut Gracilaria sp. pada Reservoir dan Biofilter Tambak Udang Litopenaeus vannamei. Bul. Oseanograf. Mar., 9(2): 133-140. https://doi.org/10.14710/buloma.v9i2.29453

Last update: 2021-07-28 23:41:14

No citation recorded.

Last update: 2021-07-28 23:41:14

No citation recorded.