Characterization of Some Commercially Important Octopus (Mollusca: Cephalopoda) from Indonesian Waters using Mitochondrial DNA Cytochrome Oxidase Sub-Unit I (Mt-DNA COI)

*Nenik Kholilah orcid  -  Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
Norma Afiati  -  Aquatic Resources Department, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
Subagiyo Subagiyo  -  Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
Received: 12 Dec 2020; Revised: 24 Feb 2021; Accepted: 27 Feb 2021; Published: 7 Mar 2021; Available online: 7 Mar 2021.
Open Access License URL: http://creativecommons.org/licenses/by-nc-sa/4.0

Citation Format:
Abstract

As per the FAO data, octopus identification is very limited in the species level at world fishery and also they are cryptic nature. On the other hand, Indonesia is one of the top ten highest octopus exporters. This study therefore aimed to determine the species of octopus based on phylogenetic analysis of mt-DNA COI. Octopuses were collected from nine different locations throughout Indonesia, i.e., Anambas, Bangka-Belitung, Cirebon, Karimunjawa, Tuban, Lombok, Buton, Wakatobi and Jayapura. Samples were mostly in the form of tentacles that were directly collected from fishermen. After being preserved in 96% ethanol, the sample was extracted in 10% chelexÒ, PCR amplification using Folmer’s primer then was further analysed by sequencing in Sanger methods. Of the 24 samples sequenced, the results recognized four species Octopodidae belongs to the three genera, named Amphioctopus aegina, Hapalochlaena fasciata, Octopus laqueus and Octopus cyanea. Mean pair-wise distances of within-species were ranged from 0 to 5.5 % and between-species was ranged from 12.9 to 15.8 %. This study distinctly confirmed the difference between genus Amphioctopus and Hapalochlaena (15.5 %), as also between O. laqueus and O. cyanea (12.9%) which was previously not completely distinguished. Although performing species identification using DNA sequences for shallow-water benthic octopus species is perhaps considered premature, this study indicated the possible application of COI sequences for species identification, thereby providing a preliminary dataset for future DNA barcoding of octopus, in particular for Indonesia waters.

Keywords: Indonesia waters; Octopus; Mt-DNA; COI

Article Metrics:

  1. Amor, M.D., Norman, M.D., Roura, A., Leite, T.S., Gleadall, I.G., Reid, A., Raya, C.P., Lu, C.C., Silvey, C.J., Vidal, E.A.G., Hochberg, F.G., Zheng, X. & Strugnell, J.M. 2017. Morphological Assessment of the Octopus vulgaris Species Complex Evaluated in Light of Molecular-based Phylogenetic Inferences. Zoolog. Scripta. 46(3): 275-288. https://doi.org/10.1111/zsc.12207
  2. Amor, M.D., Doyle, S.R., Norman, M.D., Roura, A., Hall, N.E., Robinson, A.J., Leite, T.S. & Strugnell, J.M. 2019. Genome-wide Sequencing Uncovers Cryptic Diversity and Mito-nuclear Discordance in the Octopus vulgaris Species Complex. BioRxiv. 1-36. https://doi.org/10.1101/573493
  3. Amstrong K., Herdrich, D & Levine, A. 2011. Historic Fishing Methods in American Samoa. NOAA Tech. Mem. NMFS-PIFSC-24. pp. 70
  4. Baek, S.Y., Jang, K.H., Choi, E.H., Ryu, S.H., Kim, S.K., Lee, J.H., Lim, Y.J., Lee, J., Jun, J., Kwak, M. & Lee, Y.S. 2016. DNA Barcoding of Metazoan Zooplankton Copepods from South Korea. PloS ONE. 11(7): e0157307. https://doi.org/10.1371/journal.pone.0157307
  5. Benbow, S., Humber, F., Oliver, T.A., Oleson, K.L.L., Raberinary, D., Nadon, M., Ratsimbazafy, H. & Harris, A., 2014. Lessons Learnt from Experimental Temporary Octopus Fishing Closures in South-West Madagascar: Benefits of Concurrent Closures. African J. Mar. Sci., 36(1): 37-41. https://doi.org/10.2989/1814232X.2014.893256
  6. Bilderbeek, R. & Etienne, R.S. 2018. Babette: BEAUTi 2, BEAST and Tracer for R. BioRxiv. 1-17. https://doi.org/10.1101/271866
  7. Bilgin, R., Utkan, M.A., Kalkan, E., Karhan, S.U. & Bekbölet, M., 2015. DNA Barcoding of Twelve Shrimp Species (Crustacea: Decapoda) from Turkish Seas Reveals Cryptic Diversity. Mediterr. Mar. Sci., 16: 36-45. https://doi.org/10.12681/mms.548
  8. Bucklin, A., Guarnieri, M., Hill, R.S., Bentley, A.M. & Kaartvedt, S. 1999. Taxonomic and Systematic Assessment of Planktonic Copepods using Mitochondrial COl Sequence Variation and Competitive, Species-specific PCR. Hydrobiologia. 401: 239-240. https://doi.org/10.1007/978-94-011-4201-4_18
  9. Budiyanto A. & Sugiarto, H. 1997. Catatan Mengenai si Tangan Delapan (Gurita/Octopus spp.). Oseana. 22(3): 25-33
  10. Carlini, D.B. & Graves, J.E. 1999. Phylogenetic Analysis of Cytochrome C Oxidase 1 Sequences to Determine Higher-Level Relationships within the Coleoid Cephalopods. Bul. Mar. Sci., 64(1): 57-76
  11. Casu, M., Maltagliati, F., Meloni, M., Casu, D., Cossu, P., Binelli, G., Curini‐Galletti, M. & Castelli, A. 2002. Genetic Structure of Octopus vulgaris (Mollusca, Cephalopoda) from the Mediterranean Sea as Revealed by a Microsatellite Locus. Ital. J. Zool. 69: 295-300. doi: 10.1080/11250000209356472.https://doi.org/10.1080/11250000209356472
  12. da Silva, J.M., Creer, S., Dos Santos, A., Costa, A.C., Cunha, M.R., Costa, F.O. and Carvalho, G.R.2011. Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca). PloS ONE. 6(5): E19449. https://doi.org/10.1371/journal.pone.0019449
  13. Drummond, A.J., Ho, S.Y.W., Rawlence, N. & Rambaut, A. 2007. A Rough Guide to BEAST 1.4. The University of Edinburgh. Edinburgh, United Kingdom. 42 page
  14. Findra, M., Setyobudiandi, I., Butet, N. and Solihin, D. 2017. Genetic Profile Assessment of Giant Clam Genus Tridacna as a Basis for Resource Management at Wakatobi National Park Waters, Ilmu Kelautan: Indo. J. Mar. Sci., 22(2): 67-74. https://doi.org/10.14710/ik.ijms. 22.2.67-74
  15. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. 1994. DNA Primers for Amplification of Mitochondrial Cytochrome C Oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol., 3:294-299
  16. Francis, S.V., Nishida, S. & Nandan, S.B. 2018. Validation of Male Pontella spinipes Giesbrecht, 1889 (Copepoda: Calanoida: Pontellidae) Based on Morphological and Mitochondrial COI Gene Sequence Analysis. Zool. Stud., 57(16): 1-11. https://doi.org/10.6620/ZS.2018.57-16
  17. Galal-Khallaf, A., Ardura, A., Borrell, Y.J. & Garcia-Vazquez, E. 2016. Towards More Sustainable Surimi? PCR-Cloning Approach for DNA Barcoding Reveals the Use of Species of Low Trophic Level and Aquaculture in Asian Surimi. Food Control. 61: 62-69. https://doi.org/10.1016/j.foodcont.2015.09.027
  18. Gibbs A.G. 1997. Biochemistry at Depth. In: Randall D.J.& A.P. Farrell (eds) Deep-sea ®shes. Academic, San Diego, pp 239±271. https://doi.org/10.1016/S1546-5098(08)60231-9
  19. Gimenez, L. 2019. Incorporating the Geometry of Dispersal and Migration to Understand Spatial Patterns of Species Distributions. Ecography. 42(4): 643-657. https://doi.org/10.1111/ecog.03493
  20. Hebert, P.D.N., Ratnasingham, S. & Waard, J.R.D. 2003. Barcoding Animal Life: Cytochrome C Oxidase Subunit 1 Divergences Among Closely Related Species. Biol. Sci., 270:96-99. https://doi.org/10.1098/rsbl.2003.0025
  21. Hwang, H.J., Kang, S.W., Park, S.Y., Chung, J.M., Song, D.K., Park, H., Park, H.S., Han, Y.S., Lee, J.S. & Lee, Y.S., 2016. Classification and Phylogenetic Studies of Cephalopods from Four Countries of South-East Asia. Korean J. Malacol., 32: 55-62. https://doi.org/10.9710/kjm.2016.32.1.55
  22. Ikeda Y., 2009. A Perspective on the Study of Cognition and Sociality of Cephalopod Mollusks, a Group of Intelligent Marine Invertebrates. Jpn. Psychol. Res., 51(3):146-153. https://doi.org/10.1111/j.1468-5884.2009.00401.x
  23. Jereb, P., Roper, C.F.E., Norman, M.D. & Finn, K.J. 2016. Cephalopods of the World. An Annotated and Illustrated Catalogue of Species Known to Date. Octopods and Vampire Squids. FAO Species Catalogue for Fishery Purposes. Vol.3. Roma, FAO. 370 page
  24. Kaneko N. & Kubodera, T. 2005. A New Species of Shallow Water Octopus, Octopus laqueus, (Cephalopoda: Octopodidae) from Okinawa, Japan. Bull. Nat. Sci. Mus. Ser. A. 31: 7-20
  25. Kaneko, N., Kubodera, T. & Iguchis. A. 2011. Taxonomic Study of Shallow-Water Octopuses (Cephalopoda: Octopodidae) in Japan and Adjacent Waters using Mitochondrial Genes with Perspectives on Octopus DNA Barcoding. Malacologia. 54(1-2): 97-108. https://doi.org/10.4002/040.054.0102
  26. Kholilah, N., Al Malik, M.D., Kurniasih, E.M., Sembiring, A., Ambariyanto & Mayer, C. 2018. Conditions of Decapods Infraorders in Dead Coral Pocillopora sp. at Pemuteran, Bali: Study Case 2011 and 2016. IOP Conf. Ser.: Earth Environ. Sci., 116p. https://doi.org/10.1088/1755-1315/116/1/012070
  27. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. Mega X: Molecular Evolutionary Genetics Analysis Across Computing Platforms. Molecul. Biol. Evol., 35(6): 1547-1549. https://doi.org/10.1093/molbev/msy096
  28. Leray, M., Yang, J.Y., Mayer, C.P., Mills, S.C., Agudelo, N., Ranwes, V., Boehm, J.T. & Machida, R.J. 2013. A New Versatile Primer Set Targeting a Short Fragment of the Mitochondrial COI Region for Metabarcoding Metazoan Diversity: Application for Characterizing Coral Reef Fish Gut Contents. Front. Zool., 10(1): 34. https://doi.org/10.1186/1742-9994-10-34
  29. Madduppa, H., Ayuningtyas, R., Subhan, B., Arafat, D. & Prehadi. 2016. Exploited but Unevaluated: DNA Barcoding Reveals Skates and Stingrays (Chordata, Chondrichthyes) Species Landed in the Indonesian Fish Market, Ilmu Kelautan: Indo. J. Mar. Sci, 21(2): 77-84. https://doi.org/10.14710/ik.ijms.21.2.77-84
  30. Malik, M.D.A., Pertiwi, N.P.D., Sembiring, A., Yusmalinda, N.L.A., Ningsih, E.Y. & Astarini, I.A. 2020. Short communication: Genetic structure of Longtail Tuna Thunnus tonggol (Bleeker, 1851) in Java Sea, Indonesia. Biodiv., 21(8): 3637-3643. https://doi.org/10.13057/biodiv/d210828
  31. Melis, R., Vacca, L., Cuccu, D., Mereu, M., Cau, A., Follesa, M.C. and Cannas, R., 2018. Genetic Population Structure and Phylogeny of the Common Octopus Octopus vulgaris Cuvier, 1797 in the Western Mediterranean Sea Through Nuclear and Mitochondrial Markers. Hydrobiologia. 807: 277-296. https://doi.org/10.1007/s10750-017-3399-5
  32. Murphy, J.M., Baguerias, E., Key, L.N. & Boyle, P.R. 2002. Microsatellites DNA Markers Discriminate Between Two Octopus vulgaris (Cephalopoda: Octopoda) Fisheries Along the Northwest African Coast. Bul. Mar. Sci., 71: 545-553
  33. Nieuwenhove, A.H.M.V., Ratsimbazafy, H.A. & Kochzius. M. 2019. Cryptic Diversity and Limited Connectivity in Octopuses: Recommendations for Fisheries Management. PLoS ONE 14: 1-20. https://doi.org/10.1371/journal.pone.0214748
  34. Norman, M.D., Finn, J.K. & Hochberg, F.G. 2013. Family Octopodidae. In: Jereb, P, Roper, CFE, Norman MD, Finn JK, eds. Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Know to Date: Octopods and Vampire Squids. FAO species catalog for fishery purposes. Rome: FAO. p 68-69
  35. Paino, C. 2020. Hari Gurita Internasional, Saatnya Nasib Nelayan Gurita di Indonesia Diperhatikan. https://www.mongabay.co.id/2020/10/14/hari-gurita-internasional-saatnya-nasib-nelayan-gurita. Accessed 5 January 2021. [Indonesian]
  36. Pertiwi, N.P.D., Suhendro, M.D., Yusmalinda, N.L.A., Putra, I.N.G., Putri, I.G.R.M., Artiningsih, E.Y., Malik, M.D.A., Cahyani, N.K.D. & Sembiring, A. 2020. Forensic Genetic Case Study: Species Identification and Traceability of Sea Turtle Caught in Illegal Trade in Bali, Indonesia. Biodiversitas. 21(9): 4276-4283. https://doi.org/10.13057/biodiv/d210945
  37. Posada, D. 2008. jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution. 25: 1253-1256. https://doi.org/10.1093/molbev/msn083
  38. Raberinary, D. & Benbow, S. 2012. The Reproductive Cycle of Octopus cyanea in Southwest Madagascar and Implications for Fisheries Management. Fish. Res., 125: 190-197. https://doi.org/10.1016/j.fishres.2012.02.025
  39. Radulovici, A.E., Archambault, P. & Dufresne, F. 2010. DNA Barcodes for Marine Biodiversity: Moving Fast Forward? Diversity. 2: 450-472. https://doi.org/10.3390/d2040450
  40. Robinson, B., Selbel, B. & Drazen, J. 2014. Deep-Sea Octopus (Graneledone boreopacifica) Conduct the Longest-Known Egg-Brooding Period of Any Animal. PLoS ONE. 9(7): 1-4. https://doi.org/10.1371/journal.pone.0103437
  41. Rowley, A.F., Cross, M.E., Culloty, S.C., Lynch, S.A., Mackenzie, C.L., Morgan, E., O'Riordan, R.M., Robins, P.E., Smith, A.L., Thrupp, T.J. & Vogan, C.L. 2014. The Potential Impact of Climate Change on the Infectious Diseases of Commercially Important Shellfish Populations in the Irish Sea-a review. J. Mar. Sci., 71(4): 741-759. https://doi.org/10.1093/icesjms/fst234
  42. Sauer, W.H., Gleadall, I.G., Downey-Breedt, N., Doubleday, Z., Gillespie, G., Haimovici, M., Ibáñez, C.M., Katugin, O.N., Leporati, S., Lipinski, M.R. and Markaida, U., 2019. World Octopus Fisheries. Rev. Fish. Sci. Aqua., Pp: 1-151. https://doi.org/10.1080/23308249.2019.1680603
  43. Sauer, W.H.H., Potts, W., Raberinary, D., Anderson, J. & Perrine, M.J.S. 2011. Assessment of Current Data for the Octopus Resource in Rodrigues, Western Indian Ocean. African J. Mar. Sci., 33: 181-187. https://doi.org/10.2989/1814232X.2011.572386
  44. Scheel, D. & Bisson, L. 2012. Movement Patterns of Giant Pacific Octopuses, Enteroctopus dofleini (Wulker, 1910). J. Exp. Mar. Biol. Ecol., 416-417: 21-31. https://doi.org/10.1016/j.jembe.2012.02.004
  45. Sobrino, I., Juarez, A., Rey, J., Romero, Z. & Baro, J. 2011. Description of the Clay Pot Fishery in the Gulf of Cadiz (SW Spain) for Octopus vulgaris: Selectivity and Exploitation Pattern. Fish. Res., 108: 283-290. https://doi.org/10.1016/j.fishres.2010.12.022
  46. Suhana. 2020. Bisnis Cumi-Sotong-Gurita Makin Menggurita. Available at: https://suhana.web. id/2020/02/03/bisnis-cumi-sotong-gurita-makin-menggurita/. Accessed 5 Januari 2021. [Indonesian]
  47. Suriyani, L.D. 2020. Meski Eksportir Terbesar, Perikanan Gurita Indonesia Belum Berkelanjutan. Available at: https://www.m ongabay.co.id/2020/11/25/meski-eksportir-terbesar-perikanan-gurita-indonesia-belum-berkelanjutan/. Accessed 5 Januari 2021
  48. Taylor, H. & Harris, W. 2012. An Emergent Science on the Brink of Irrelevance: a Review of the Past 8 Years of DNA Barcoding. Mol. Ecol. Res., 3: 377-388. https://doi.org/10.1111/j.1755-0998.2012.03119.x
  49. Tiraa-Passfield A. 1999. Octopus Fishing by Women of Fakaofo Atoll, Tokelau Islands. SPC Tradit. Mar. Res. Manag. Know. Inf. Bull., 11: 11-12
  50. Van Heukelem, W.F. 1976. Growth, Bioenergetics, and Life-span of Octopus cyanea and Octopus maya. Thesis. University of Hawaii. Hawaii. 224p
  51. Voss, G.L. & Solis, R.M.J. 1966. Octopus maya, a New Species from the Bay of Campeche, Mexico. Bull. Mar. Sci., 16: 615-625
  52. Walsh, P.S., Metzger, D.A. & Higuchi, R. 1991. Chelex 100 as a Medium for Simple Extraction of DNA for PCR-based Typing from Forensic Material. BioTechniq, 10(4): 506-513
  53. Zeng, L., Wen, J., Fan, S., Chen, Z., Xu, Y., Sun, Y., Chen, D. & Zhao, J. 2017. Species Identification of Fish Maw (Porcupinefish) Products Sold on the Market Using DNA Sequencing of 16S rRNA and COI Genes. Food Control., 86: 159-162. https://doi.org/10.1016/j.foodcont.2017.11.031

Last update: 2021-04-18 11:59:10

No citation recorded.

Last update: 2021-04-18 11:59:10

No citation recorded.