skip to main content

Natuna Off-Shelf Current (NOC) Vertical Variability and Its Relation to ENSO in the North Natuna Sea

1Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia

2Department of Aquaculture, Diponegoro University, Indonesia

3Department of Oceanography, Diponegoro University, Indonesia

4 Marine Research Center, Agency for Marine & Fisheries Research & Human Resources, Ministry of Marine and Fisheries, Indonesia

5 Departement of Oceanography, Diponegoro University, Indonesia

6 Department of Geography, Faculty of Social Science, Srinakharinwirot University, Thailand

View all affiliations
Received: 20 Mar 2021; Revised: 24 Apr 2021; Accepted: 11 May 2021; Published: 16 May 2021; Available online: 16 May 2021.

Citation Format:
Abstract

During the northwest monsoon (NWM), southerly flow off the Natuna Islands appeared as the extension of the turning Vietnam coastal jet, known as Natuna off-shelf current (NOC). NOC is generated by the interaction of wind stress and the North Natuna Sea’s bottom topography. The purposes of the present study is to investigate the vertical variability of NOC and its relation to El Niňo Southern Oscillation (ENSO) using Marine Copernicus reanalysis data. The vertical variability refers to the spatial distribution of NOC pattern at the surface layer, thermocline layer, and deep/bottom layer.  in 2014 as representative of normal ENSO condition. To investigate the effect of ENSO, the spatial distribution of NOC in 2011 and 2016 were compared which represent the La Niňa and El Niňo conditions, respectively. The results show that NOC starts to generate at the southeast monsoon season to the transition I season and peaks in the northwest monsoon season. The occurrence of NOC is identified at all depth layers with the weakened NOC at the deep layer. Related to the ENSO effect, La Niňa tends to strengthen NOC while El Niňo tends to weaken NOC. These are releted with the strengthening and weakening northerly wind speed during La Niňa and El Niňo, Respectively. During La Niňa events, the NOC occurs more frequently than during El Niňo. Thus, beside affecting the magnitude of NOC, ENSO also influence the frequency occurrence of NOC.

Fulltext View|Download
Keywords: Natuna off-shelf current; NOC; vertical variability; ENSO; North Natuna Sea

Article Metrics:

  1. Alifdini, I., Shimada, T. & Wirasatriya, A. 2021. Seasonal Distribution and Variability of Surface Winds in the Indonesian Seas Using Scatterometer and Reanalysis Data. Int. J. Climatol., in press. https://doi.org/10.1002/joc.7101
  2. Chu, P.C., Edmons, N.L. & Fan, C. 1999. Dynamical Mechanisms for the South China Sea Seasonal Circulation and Thermohaline Variabilities. J. Phys. Oceanogr., 29(11):2971-2989
  3. Drévillon, M., Régnier, C., Lellouche, J.M., Garric, G., Bricaud, C. & Hernandez, O. 2018. Quality Information Document For Global Ocean Reanalysis Products GLOBAL-REANALYSIS-PHY-001-030. Marine Copernicus eu
  4. Fang, W., Fang, G., Shi, P., Huang, Q. & Xie, Q. 2002. Seasonal Structures of Upper Layer Circulation in the Southern South China Sea From in situ Observations. J. Geophys. Res., 107(C11): 23-32. https://doi.org/10.1029/2002JC001343,2002
  5. Guohong, F., Susanto, D., Soesilo, I., Zheng, Q.A., Fangli, Q. & Zexun, W., 2005. A note on the South China Sea shallow interocean circulation. Adv. Atmos. Sci., 22(6): 946-954
  6. Fang, G., Wang, Y., Wei, Z., Fang, Y., Qiao, F. & Hu, X., 2009. Interocean Circulation and Heat and Freshwater Budgets of the South China Sea Based on a Numerical Model. Dyn. Atmosheres Oceans. 47:55–72
  7. Fernandez, E., & Lellouche, J.M.. 2018. Product User Manual for the Global Ocean Reanalysis Products GLOBAL-REANALYSIS-PHY-001-030. Marine Copernicus eu
  8. Figa-Saldaña, J., Wilson, J.J., Attema, E., Gelsthorpe, R., Drinkwater, M.R. & Stoffelen, A., 2002. The Advanced Scatterometer (ASCAT) on the Meteorological Operational (MetOp) Platform: A Follow on for European Wind Scatterometers. Can. J. Remote Sens., 28(3): 404-412
  9. Gan, J., Li, H., Curchitser, E.N., & Haidvogel, D.B. 2006. Modeling South China Sea Circulation: Response to Seasonal Forcing Regimes. J. Geophys. Res., 111: C06034. https://doi.org/10.1029/2005JC003298
  10. Hu, J., H. Kawamura, H. Hong, & Y. Qi. 2000. A Review on The Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion. J. Oceanog. 56: 607-624
  11. Huang, Q., 1994. Currents in the Nansha Islands Sea Area, in Proceedings of Physical Oceanography Studies in the Nansha Islands Sea Area, pp. 10– 27, China Ocean Press, Beijing
  12. Khaldun, M.H.I., A. Wirasatriya, A.A.D. Suryo, & Kunarso. 2018. The Influence of Indian Ocean Dipole (IOD) on The Variability of Sea Surface Temperature and Precipitation in Sumatera Island. IOP Conf. Ser.: Earth Environ. Sci., 165(2018): 012008. https://doi.org/10.1088/1755-1315/165/1/012008
  13. Li, L., Xu, J., Jing, C., Wu, R. & Guo, X. 2003. Annual Variation of Sea Surface Height, Dynamic Topography and Circulation in the South China Sea. Sci. China (series D). 46(2):127-138
  14. Maisyarah, S., Wirasatriya, A., Marwoto, J., Subardjo, P. & Prasetyawan, I.B.. 2019. The Effect of the ENSO on the Variability of SST and Chlorophyll-a in the South China Sea. IOP Conf. Ser.: Earth Environ. Sci., 246: 012027. https://doi.org/10.1088/1755-1315/246/1/012027
  15. Ropelewski, C.F. & Jones, P.D. 1987. An extension of the Tahiti-Darwin Southern Oscillation Index. Monthly Weather Review. 115: 2161-2165
  16. Setiawan, R.Y. & Habibi, A. 2010. SST Cooling in the Indonesian Seas. Ilmu Kelautan: Indonesian Journal of Marine Science. 15(1): 42-46
  17. Susanto, R.D., Moore, T.S. & Marra, J. 2006. Ocean Color Variability in the Indonesian Seas During the Seawifs era. Geochem. Geophys. Geosys., 7(5):1-16
  18. Tangang, F.T., Xia, C. & Qiao, F., 2011. Seasonal Circulations in the Malay Peninsula Eastern Continental Shelf from a Wave-tide-circulation Coupled Model. Ocean Dyn., 61: 1317–1328
  19. Wang, C., Wang, W., Wang, D. & Wang, Q., 2006a. Interannual Variability of the South China Sea Associated with El Niño. J. Geophys. Res., 111: C03023
  20. Wang, D., Liu, Q., Huang, R., Yan, D., & Qu, T., 2006b. Interannual Variability of the South China Sea Throughflow Inferred from Wind Data and an Ocean Data Assimilation Product. Geophys. Res. Lett., 33: L14605
  21. Wei, Z., Fang, G., Xu, T., Wang, Y. & Lian, Z. 2016. Seasonal Variability of the Isopycnal Surface Circulation in the South China Sea Derived From a Variable-grid Global Ocean Circulation Model. Acta Oceanologica Sinica 35(1): 11–20. https://doi.org/10.1007/s13131-016-0791-3
  22. Wyrtki, K., 1961. Physical Oceanography of the Southeast Asian Waters, vol. 2, Scientific results of marine investigation of the South China Sea and Gulf of Thailand, NAGA Rep., 195 pp., Scripps Inst. of Oceanogr., La Jolla, Calif
  23. Xue, H., Chai, F., Pettigrew, N., Xu, D., Shi, M. & Xu, J., 2004. Kuroshio Intrusion and the Circulation in the South China Sea. J. Geophys. Res., 109(C02017):1-14. https://doi.org/10.1029/2002JC0017 24
  24. Yin, J., C. Liu, J. Zhang, X. Yang, J. Wu, W. Oschmann, F. T. Fürsich, B. Zhu, & H. Zhang. 2018. Distribution and Constraining Factors of Planktonic and Benthic Foraminifers in Bottom Sediments of the Southern South China Sea. Paleogr. Paleoclimatol. Paleoecol., 502:130-146. https://doi.org/10.1016/j.palaeo.2018.04.029
  25. Zhu, Y., Sun, J., Wang, Y., Li, S., Xu, T., Wei, Z. & Qu, T., 2019. Overview of the Multi-layer Circulation in the South China Sea. Prog. Oceanogr., 175: 171-182. https://doi.org/10.1016/j.pocean.2019. 04.001
  26. Zu, T., Xue, H., Wang, D., Geng, B., Zeng, L., Liu, Q., Chen, J. & He, Y., 2019. Interannual Variation of the South China Sea Circulation During Winter: Intensified in the Southern Basin. Clim.Dyn., https://doi.org/10.1007/s00382-018-4230-3

Last update: 2021-07-27 00:22:06

No citation recorded.

Last update: 2021-07-27 00:22:06

No citation recorded.