skip to main content

Revisiting the Spawning Pattern of Nyale Worms (Eunicidae) Using the Metonic Cycle

1Department of Science Education, FKIP, Universitas Mataram, Indonesia

2Faculty of Letters, Chiba University, Japan

Received: 11 Mar 2021; Revised: 25 May 2021; Accepted: 27 May 2021; Published: 1 Jun 2021; Available online: 1 Jun 2021.

Citation Format:
Abstract
Mass spawning dates of nyale worms (Eunicidae) have been scientifically predictable since 2019. The month of spawning is consistently following the pattern of the February full moon, while the date of spawning is consistently on the 20th of the lunar calendar. There are particular years with February only spawning, March only spawning, and split spawning in both February and March. The existing prediction of the split spawning, however, was constructed with very little available data. The present study aimed to revisit the split spawning prediction using the Metonic cycle, a 19-year lunisolar cycle. The results show that the spawning prediction very much follows the Metonic Cycle. There are minor dates on split spawning to be revised, when February full moon rises on 14th February. The revised hypothesis is that split spawning is very likely to occur when the full moon rises between the 7th to 13th of February. When February full moon appears before the 7th of February, single spawning will take place on the fifth day after the March full moon.  When February full moon befalls after the 13th of February, single spawning will occur on the fifth day after the February full moon. The revised prediction method has only 2 (two) deviances in 114 years of simulation dates. The present study is the first to suggest the link between Polychaete spawning patterns and the Metonic Cycle.
Fulltext View|Download
Keywords: bau nyale; Lombok; Polychaete; swarming; cultural tourism; prediction, hypothesis

Article Metrics:

  1. Baart, F., Van Gelder, P.H., De Ronde, J., Van Koningsveld, M., & Wouters, B. 2012. The effect of the 18.6-year lunar nodal cycle on regional sea-level rise estimates. J. Coastal. Res., 28(2):511-516
  2. Bachtiar, I., & Bachtiar, N.T. 2019. Predicting spawning date of nyale worms (Eunicidae, Polychaeta) in the southern coast of Lombok Island, Indonesia. Biodiversitas J. Biol. Divers., 20(4):971-977
  3. Caspers, H. 1984. Spawning periodicity and habitat of the palolo worm Eunice viridis (Polychaeta: Eunicidae) in the Samoan Islands. Mar. Biol., 79(3):229-236
  4. Currie, R.G., & Fairbridge, R.W. 1985. Periodic 18.6-year and cyclic 11-year induced drought and flood in northeastern China and some global implications. Quat. Sci. Rev., 4(2):109-134
  5. Fogarty, N.D., & Marhaver, K.L. 2019. Coral spawning, unsynchronized. Science, 365(6457):987-988
  6. Foster, T., Heyward, A.J., & Gilmour, J.P. 2018. Split spawning realigns coral reproduction with optimal environmental windows. Nat. Commun., 9:718. DOI: 10.1038/s41467-018-03175-2
  7. Furusawa, T., & Siburian, R. 2019. Do traditional calendars forecast vegetation changes in Western Sumba, Indonesia? Analyses of indigenous intercalation methods and satellite time-series data. People Cult. Oceania, 35:1-30
  8. Hock, K., Doropoulos, C., Gorton, R., Condie, S.A., & Mumby, P. 2019. Split spawning increases robustness of coral larval supply and inter-reef connectivity. Nat. Commun., 10:3463. DOI: 10.1038/s41467-019-11367-7
  9. Hutchings, P.A., & Howitt, L. 1988. Swarming of polychaetes on Great Barrier Reef. Proc. 6th Int. Coral Reef Sym. James Cook University, Townsville, 8-12 August 1988
  10. Lefale, P.F., 2010. Ua ‘afa le aso stormy weather today: traditional ecological knowledge of weather and climate. The Samoa experience. Climatic Change, 100(2):317-335
  11. Mahulette, F. 2020. Traditionally catching and processing of laor in Moluccas Islands. Local Wisdom: Jurnal Ilmiah Kajian Kearifan Lokal, 12(2):99-110
  12. Odani, S., Furusawa, T., Sato, M., & Shimizu‐Furusawa, H. 2016. Ecological anthropological analysis of nyale foraging and the Sasak calendar system in Lombok. Proc .7th Indones. Jpn. Joint Sci. Symp., Chiba, 20‐24 November 2016
  13. Osafune, S., Kouketsu, S., Masuda, S., & Sugiura, N. 2020. Dynamical ocean response controlling the eastward movement of a heat content anomaly caused by the 18.6‐year modulation of localized tidally induced mixing. J. Geoph. Res.-Oceans, 125(2): e2019JC015513
  14. Pamungkas, J. 2015. Species richness and macronutrient content of wawo worms (Polychaeta, Annelida) from Ambonese waters, Maluku, Indonesia. Biodiv. Data J., 3: e4251. DOI: 10.3897/bdj.3.e4251
  15. Peng, D., Hill, E.M., Meltzner, A.J., & Switzer, A.D. 2019. Tide gauge records show that the 18.61‐year nodal tidal cycle can change high water levels by up to 30 cm. J. Geoph. Res.-Oceans, 124(1):736-749
  16. Prentiss, N.K. 2020. Nocturnally swarming Caribbean polychaetes of St. John, US Virgin Islands, USA. Zoosymposia, 19(1):91-102
  17. Sakai, Y., Hatta, M., Furukawa, S., Kawata, M., Ueno, N., & Maruyama, S. 2020. Environmental factors explain spawning day deviation from full moon in the scleractinian coral Acropora. Biol. Lett., 16:20190760
  18. Shlesinger, T., & Loya, Y. 2019. Breakdown in spawning synchrony: A silent threat to coral persistence. Science, 365(6457):1002-1007
  19. Taqwiem, A., Muhammad, H.A.R., & Maulidi, A. 2020. Halal tourism development analysis in Lombok Island. International Conference on Islam, Economy, and Halal Industry. KnE Social Sciences: 177-184. DOI: 10.18502/kss.v4i9.7324
  20. Triyanti, R., Kurniasari, N., Yuliaty, C., Muawanah, U., & Febrian, T. 2020. Management of coastal resources in Mandalika in an era of disruptive innovation waves. IOP Conf. Ser.: Earth Environ. Sci., 584(1): 012064
  21. Tsumura, S. 2012. Adjusting calculations to ideals in the Chinese and Japanese calendars. In: Ben-Dov, J., Horowitz, W., Steele, J.M. (eds.). Living the Lunar Calendar. Oxbow Books, Oxford. pp. 349-372
  22. Wijayanti, D.P., Indrayanti, E., Wirasatriya, A., Haryanto, A., Haryanti, D., Sembiring, A., Fajrianzah, T.A., & Bhagooli, R. 2019. Reproductive seasonality of coral assemblages in the Karimunjawa Archipelago, Indonesia. Front. Mar. Sci., 6:195. DOI: 10.3389/fmars.2019.00195
  23. Willis, B.L., Babcock, R.C., Harrison, P.L., Oliver, J.K., Wallace, C.C. 1985. Patterns in the mass spawning of corals on the Great Barrier Reef from 1981 to 1984. Proc. 5th In.t Coral Reef Cong., Tahiti, 27 May -1 June 1985
  24. Yamano, H., Sakuma, A., & Harii, S. 2020. Coral-spawn slicks: Reflectance spectra and detection using optical satellite data. Remote Sens. Environ., 251:112058
  25. Yasuda, I. 2018. Impact of the astronomical lunar 18.6-yr tidal cycle on El-Niño and Southern Oscillation. Sci. Rep., 8(1):1-7

Last update: 2021-08-02 17:25:17

No citation recorded.

Last update: 2021-08-02 17:25:17

No citation recorded.