skip to main content

Analysis of Characteristics and Turbulent Mixing of Seawater Mass in Lombok Strait

1Master Program of Marine Science, IPB University, Indonesia

2Department of Marine Science and Technology, IPB University, Indonesia

3Faculty of Defence Strategy, Indonesian Defence University, Indonesia

4 Japan Agency for Marine-Earth Science and Technology, Japan

View all affiliations
Received: 8 Jan 2021; Revised: 17 Mar 2021; Accepted: 29 Mar 2021; Published: 1 Jun 2021; Available online: 1 Jun 2021.

Citation Format:
Abstract

The Lombok Strait, as one of the outlet straits, is part of the ITF route, which is directly adjacent to the Indian Ocean. There is a sill in the Lombok Strait, which is a place for internal wave generation. Leg-1 data from the Japan Agency for Marine-Earth Science and Technology in collaboration with the Agency for the Assessment and Application of Technology which is part of the Tropical Ocean Climate Study Expedition including CTD Yoyo and ADCP taken using ship vehicles R/V Kaiyo. CTD Snapshot from PUSHIDROSAL using the KRI Spica 934 vehicle part of the Opssurta Baruna Jaya 2 Expedition. Determination of seawater mass stratification with the criteria for the thermocline layer is ≥ 0.05 °C.m-1. Four types of water masses were identified, Java Sea, mixed seawater mass (Java Sea - ITF) which occurred diapycnal mixing, North Pacific Subtropical Water (NPSW) and North Pacific Intermediate Water (NPIW). The seawater mass stratification in the Lombok Strait based on temperature, salinity and density which are seen to follow the internal tidal pattern. The average values for energy dissipation and vertical diffusivity for each layer and replication were 5.73 x 10-7 W.Kg-1 and 3.67 x 10-2 m2.s-1 for CTD Yoyo and 2.25 x 10-6 W.Kg-1 and 7.38 x 10-2 m2.s-1 for CTD Snapshot. The value obtained is greater than the open ocean and straits in other studies. The high shear value confirms this in the thermocline layer. The Richardson gradient value> 0.25 is relatively constant in the thermocline layer.

Fulltext View|Download
Keywords: Water Mass; Turbulent Mixing; Lombok Strait
Funding: Dr. Adi Purwandana, Research Center for Oceanography (P2O-LIPI)

Article Metrics:

  1. Abida, R.F., Pranowo, W.S., Pratomo, Y. & Kisnarti, E.A., 2015. Identifikasi komponen harmonik di Selat Lombok berdasarkan data arus time series. Depik, 4(1): 24-32. https://doi.org/10.13170/depik.1.1.2361
  2. Atmadipoera, A., Molcard, R., Madec, G., Wijffels, S., Sprintall, J., Koch-Larrouy, A., Jaya, I. & Supangat, A. 2009. Characteristics and variability of the Indonesian throughflow water at the outflow straits. Deep Sea Res., 56: 1942-1954 https://doi.org/10.1016/j.dsr.2009.06.004
  3. Atmadipoera, A.S. & Hasanah, P., 2017. Karakteristik Dan Variabilitas ITF Flores Dan Koherensinya Dengan Arus Pantai Selatan Jawa. J. Ilmu Teknol. Kelaut. Trop. 9(2): 537-556
  4. https://doi.org/10.29244/jitkt.v9i2.19289
  5. Delpeche, N.C., Soomere, T. & Lilover, M.J. 2010. Diapycnal mixing and internal waves in the Saint John River Estuary, New Brunswick, Canada with a discussion relative to the Baltic Sea. Estonian J. Eng., 16(2):157-175. https://doi.org/10.3176/eng.2010.2.05
  6. Dillon, T.M. 1982. Vertikal overturns: a comparation of Thorpe and Ozmidov length scale. J. Geophys. Res., 87:9601-9613. https://doi.org/10.1029/JC087iC12p09601
  7. Emery, W.J. and R.E. Thomson. 1998. Data Analysis Method in Physical Oceanography. BPC Weatons, Britain, 634 p
  8. Fer, I., Skogseth, R. & Haugan, P.M. 2004. Mixing of the Storfjorden overflow (Svalbard Archipelago) inferred from density overturns. J. Geophys. Res. 109(C1):1-14 https://doi.org/10.1029/2003JC001968
  9. Galbraith, P.S. & Kelley, E. 1996. Identifying overturn in CTD profiles. J. Atmos. Ocean. Tech., 13:688-702. https://doi.org/10.1175/1520-0426(1996)013<0688:IOICP>2.0.CO;2
  10. Gunawan, I., Pranowo, W.S. & Sukoco, N.B., 2019. Studi Karakteristik Massa Air Laut di Perairan Timur Indonesia dengan Memanfaatkan Data Argo Float. J. Chart Datum, 5(2):130-143
  11. https://doi.org/10.37875/chartdatum.v5i2.151
  12. Gordon, A.L., Susanto, R.D. & Vranes, K. 2003. Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature. 425: 824-828. https://doi.org/10.1038/nature02038
  13. Gordon, A.L., Sprintall, J., Van Aken, H.M., Susanto, D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W. & Wirasantosa, S., 2010. The Indonesian throughflow during 2004-2006 as observed by the INSTANT program. Dyn. Atmospheres Oceans, 50(2): 115-128. https://doi.org/10.1016/j.dynatmoce.2009.12.002
  14. Hao, J., Chen, Y., Wang, F., & Lin, P. 2012. Seasonal thermocline in the China Seas and northwestern Pacific Ocean. J. Geophys. Res.,117: C02022 https://doi.org/10.1029/2011JC007246
  15. Hatayama T. 2004. Transformation of the Indonesian Throughfow water by vertikal mixing and it relation to tidal generated internal wave. J Oceanogr. 60: 569-585. https://doi.org/10.1023/B:JOCE.0000038350.32155.cb
  16. Instant. 2005. Ekspedisi INSTANT 2003-2005 Menguak Arus Lintas Indonesia. BRKP-DKP. ISBN: 979-3768-06-1
  17. Kitade, Y., Matsuyama, M. & Yoshida, J. 2003. Distribution of overturn induced by internal tides and Thorpe scale in Uchiura Bay. J. Oceanograp., 59: 845-850. https://doi.org/10.1023/B:JOCE.0000009575.29339.35
  18. Koch‐Larrouy, A., Madec, G., Bouruet‐Aubertot, P., Gerkema, T., Bessières, L. & Molcard, R., 2007. On the transformation of Pacific Water into Indonesian Throughflow water by internal tidal mixing. Geophys. Res. Lett. 34: 1-6. https://doi.org/10.1029/2006GL028405
  19. Martinez, D.M.V., Schettini, E.B.C. & Silvestrini, J.H., 2006. The influence of stable stratification on the transition to turbulence in a temporal mixing layer. J. Braz. Soc. Mech. Sci. & Eng. XXVIII(2): 242-252. https://doi.org/10.1590/S1678-58782006000200014
  20. Mayer, B. & Damm, P.E. 2012. The Makassar Strait throughflow and its jet. J. Geophys. Res., 117(C07020): 1-14. https://doi.org/10.1029/2011JC007809
  21. Nagai, T. & Hibiya, T. 2015. Internal tides and associated vertical mixing in the Indonesian archipelago. J. Geophys. Res. 120: 3373-3390. https://doi.org/10.1002/2014JC010592
  22. Nagai, T., Hibiya, T. & Bouruet-Aubertot, P. 2017. Nonhydrostatic simulations of tide-induced mixing in the Halmahera Sea: A possible role in the transformation of the Indonesian Throughflow waters. J Geophys Res: Oceans, 122: 8933-8943. https://doi.org/10.1002/2017JC013381
  23. Nagai, T., & Hibiya, T. 2020. Combined effects of tidal mixing in narrow straits and the Ekman transport on the sea surface temperature cooling in the southern Indonesian seas. J. Geophys. Res., 125 (11): e2020JC016314. https://doi.org/10.1029/2020JC016314
  24. Nagai, T., Hibiya, T., & Syamsudin, F. 2021. Direct estimates of turbulent mixing in the Indonesian archipelago and its role in the transformation of the Indonesian throughflow waters. Geophys Res Lett, 48: e2020GL091731. https://doi.org/10.1029/2020GL091731
  25. Park, Y.H., Fuda, J.L., Durand, I. & Garabato, A.C.N., 2008. Internal tides and vertical mixing over the Kerguelen Plateau. Deep Sea Research Part II: Topical Studies in Oceanography, 55: 582-593. https://doi.org/10.1016/j.dsr2.2007.12.027
  26. Polzin, K.L., Toole, J.M., Ledwell, J.R. & Schmitt, R.W.1997. Spatial variability of turbulent mixing in the Abyssal Ocean. Science, 276: 93-96. https://doi.org/10.1126/science.276.5309.93
  27. Pond, S. & Pickard, G.L. 1983 Introductory Dynamical Oceanography Ed ke-2 (Oxford: Pergamon Press)
  28. https://doi.org/10.1016/B978-0-08-057054-9.50007-9
  29. Purwandana A, Mulia P, dan Agus S. A. 2014. Distribusi Percampuran Turbulen di Perairan Selat Alor. Ilmu Kelautan: Indonesian Journal of Marine Science, 19(1): 43-54. https://doi.org/10.14710/ik.ijms.19.1.43-54
  30. Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T. & Atmadipoera, A.S. 2020. Spatial structure of turbulent mixing inferred from historical CTD datasets in the Indonesian seas. Prog. Oceanogr., 184: 102312. https://doi.org/10.1016/j.pocean.2020.102312
  31. Robertson, R. & Ffield, A. 2005. M2 baroclinic tides in the Indonesian Seas. Oceanography, 18:62-73. https://doi.org/10.5670/oceanog.2005.06
  32. Siregar, S.N., Sari, L.P., Purba, N.P., Pranowo, W.S. & Syamsuddin, M.L. 2017. Pertukaran massa air di Laut Jawa terhadap periodisitas monsun dan Arlindo pada tahun 2015. Depik, 6(1):44-59. https://doi.org/10.13170/depik.6.1.5523
  33. Stansfield, K., Garrett, C. & Dewey, R. 2001. The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait. J. Phys. Oceanogr. 31: 3421. https://doi.org/10.1175/1520-0485(2001)031<3421:TPDOTT>2.0.CO;2
  34. St. Laurent, L. C., Simmons, H. L., & Jayne, S. R. 2002. Estimating tidally driven mixing in the deep ocean. Geophysi Res Lett, 29(23): 21.1-21.4. https://doi.org/10.1029/2002GL015633
  35. Susanto, R.D., Mitnik, L. & Zheng, A., 2005. Ocean internal waves observed in the Lombok Strait. Oceanography, 18: 80-87. https://doi.org/10.5670/oceanog.2005.08
  36. Thorpe, S.A. 1977. Turbulence and mixing in a Scottish Loch. Philosophical Transactions of the Royal Soc. London Ser. A, 286: 125-181 https://doi.org/10.1098/rsta.1977.0112
  37. Winters, K.B. & D'Asaro, E.A. 1997. Direct simulation of internal wave energy transfer. J. Phys. Oceanogr. 27:1937-1945. https://doi.org/10.1175/1520-0485(1997)027<1937:DSOIWE>2.0.CO;2
  38. Wyrtki, K. 1961. Physical Oseanography of the Southeast Asian Waters. Naga Report (2). Scripps Institution of Oceanography, The University of California, La Jolla, California, 195p

Last update: 2021-07-26 13:50:55

No citation recorded.

Last update: 2021-07-26 13:50:55

No citation recorded.