Preliminary Study of the Use of Sulphonated Polyether Ether Ketone (SPEEK) as Proton Exchange Membrane for Microbial Fuel Cell (MFC)

*Dani Permana  -  Indonesian Institute of Sciences, Indonesia
Herlian Eriska Putra  -  Indonesian Institute of Sciences, Indonesia
Djaenudin Djaenudin  -  Indonesian Institute of Sciences, Indonesia
Published: 18 Feb 2018.
Open Access Copyright (c) 2018 International Journal of Renewable Energy Development

Citation Format:
Article Info
Section: Original Research Article
Language: EN
Full Text:
Statistics: 1045 540

Sulfonated polyether ether ketone (SPEEK) was utilized as a proton exchange membrane (PEM) in Microbial Fuel Cell (MFC). The SPEEK performance in producing electricity had been observed in MFC using wastewater and glucose as substrates. The MFC with catering and tofu wastewater produced maximum power density about 0.31 mW/m2 and 0.03 mW/m2, respectively, lower that of MFC with tapioca average power density of 39.4 W/m2 over 48 h. The power density boosted because of the presence of Saccharomyces cerevisiae as inoculum. The study using of S. cerevisiae and Acetobacter acetii, separately, were also conducted in with glucose as substrate. The MFC produced an average power densities were 7.3 and 6.4 mW/m2 for S. cerevisiae and A. acetii, respectively. The results of this study indicated that SPEEK membrane has the potential usage in MFCs and can substitute the commercial membrane, Nafion.

Article History: Received: Juni 14th 2017; Received: Sept 25th 2017; Accepted: December 16th 2017; Available online

How to Cite This Article: Putra, H.E., Permana, D and Djaenudin, D. (2018) Preliminary Study of the Use of Sulfonated Polyether Ether Ketone (SPEEK) as Proton Exchange Membrane for Microbial Fuel Cell (MFC). International Journal of Renewable Energy Development, 7(1), 7-12.

Microbial Fuel Cell, sulphonated polyether ether ketone, electricity

Article Metrics:

  1. Abourached, C., Catal, T., Liu, H. (2013) Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Research, 51, 228–233.
  2. Bond, D. R. & Lovely. D. R. (2003) Electricity production by Geobacter sulfureducens attached to electrodes. App. Environ. Microbiology. 69, 1548-1555.
  3. Cristiani,P., Carvalho, M. L., Guerrini, E., Daghio, M., Santoro, C. Li, B. (2013) Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells. Bioelectrochemistry 92, 6–13.
  4. Gal, I., Schlesinger,O., Amir, L., Alfonta, L. (2016) Bioelectrochemistry Yeast surface display of dehydrogenases in microbial fuel-cells. Bioelectrochemistry,112, 53–60.
  5. Guerrini, E., Grattieri, M., Trasatti, S. P., Bestetti, M., Cristiani, P. (2014) Performance explorations of single chamber microbial fuel cells by using various microelectrodes applied to biocathodes. International Journal of Hydrogen Energy, 39(36), 21837–21846.
  6. Handayani, S., Purwanto, W.W., Dewi, E.L., Soemanto,R.W. (2007) Synthesis and characterization of electrolyte membranes sulfonated poly ether ether ketone. Indonesian Journal of Materials Science. 8(2), 129-133.
  7. Katz, E., Shipway, A.N. & Willner. I. (2003) Biochemical fuel cell.In Handbook of Fuel Cells-Fundamental, Technology and Applications, Vol.I: Fundamental and Survey of Systems.W. Vielstich, H. A. Gasteiger and A. Lamm.Wiley and Sons, Ltd. New York.
  8. Kim, H., Kim, B. and Yu, J. (2015) Bioresource Technology Power generation response to readily biodegradable COD in single-chamber microbial fuel cells. Bioresource Technology, 186, 136–140.
  9. Li, Y., Wu, Y., Puranik, S., Lei, Y., Vadas, T., Li, B. (2014) Metals as electron acceptors in single-chamber microbial fuel cells. Journal of Power Sources, v269, 430–439.
  10. Liu, B. and Li, B. (2013) Single chamber microbial fuel cells ( SCMFCs ) treating wastewater containing methanol. International Journal of Hydrogen Energy, 39(5), 2340–2344.
  11. Logan, B. E., Oh, S. E., Kim, I. S., Van Ginkel, S. (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Tech., 36, 2530-2535.
  12. Logan, B. E. (2004) Feature article: biologically extracting energy from wastewater: biohydrogen and microbial fuel cells. Environ. Sci. Tech., 38(9), 160A-167A.
  13. Metcalf & Eddy. (2003) Wastewater Engineering, Treatment and Reuse. Fourth edition. New York: McGraw-Hill.
  14. Neburchilov, V.; Martin, J.; Wang, H.; Zhang. J. (2007) Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells. J. Power Sources. 169, 221-238.
  15. Notodarmojo, S. (2005) Pencemaran Tanah dan Air Tanah. Penerbit: ITB.
  16. Oh, S. E., Min, B., Logan, B.E. (2008) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technology. 38, 4900-4904.
  17. Park, D.Y. and Zeikus, J.G. (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore, Applied and Environmental Microbiology, 66, 1292 – 1297.
  18. Permana, D. H. R. Haryadi, H. E. Putra , W. Juniaty, S. D. Rachman, dan S. Ishmayana. (2013) Evaluasi penggunaan Metilen Biru Sebagai Mediator Elektron pada Microbial Fuel Cell dengan Biokatalis Acetobacter aceti. Molekul, Journal of Chemistry. 8(1), 78 – 88.
  19. Permana, D. H. E. Putra, Djaenudin, D. Rahayuningwulan, H. R. Hariyadi. (2015a) Electricity Generation from Tapioca Wastewater Using Double Chamber Microbial Fuel Cell (DCMFC) with Saccharomyces cerevisiae as Biocatalysts Source. The 4th International Conference on Fuel Cell and Hydrogen Technology 2013. Yogyakarta 7–10 October 2013. ISBN 978-602-95555-7-8. 34-27.
  20. Permana, D., Rosdianti, D., Ishmayana, S., Saadah,D., Rachman, D., Putra, H.E., Rahayuningwulan, D. and Hariyadi,H.R. (2015b) Preliminary Investigation of Electricity Production Using Dual Chamber Microbial Fuel Cell (DCMFC) with Saccharomyces cerevisiae as Biocatalyst and Methylene Blue as Electron Mediator. Procedia Chemistry. 17, 36-43.
  21. Prestigiacomo, C., Fernandez-marchante, C. M., Fernández-morales, F. J., Cañizares, P. and Scialdone, O. (2016) New prototypes for the isolation of the anodic chambers in microbial fuel cells. Fuel, 181, 704–710.
  22. Putra, H.E., D. Permana, A. S. Putra, Djaenudin, H. R. Hariyadi. (2012) Utilization of Microbial Fuel Cell for Electricity Generation from Wastewater of Food Industry. Indonesian Journal of Applied Chemistry. 14, 78 – 82.
  23. Rabaey, K., Lissens, G.,Siciliano, S.D. and Verstraete. W. (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnology Letters, 25, 1531–1535.
  24. Rahayuningwulan, D. Permana, D., Utami, R.P. (2013) The Influence of Electrode Configuration in Single Chamber Microbial Fuel Cell Using Rice-rinsing Wastewater as Substrate. The 4th International Conference on Fuel Cell and Hydrogen Technology 2013. Yogyakarta 7 – 10 October 2013. ISBN 978-602-95555-7-8. 47-50.
  25. Santoro, C., I. Ieropoulos, J. Greenman, P. Cristiani, T. Vadas, A. Mackay, and B. Li. (2013) Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine. Journal of Power Sources, 238, 190–196.
  26. Schröder, U. (2007) Anodic electron transfer mechanisms in microbial fuel cell and their energy efficiency, Physical Chemistry Chemical Physics, 9, 2619 – 2629.
  27. Shukla, A.K., Suresh, P., Berchmans, S. and Rajendran, A.(2004) Biological fuel cells and their applications, Current Science, 87, 455 – 468.
  28. Singh, S., Modi, A., and Verma, N. (2015) Enhanced power generation using a novel membrane-less single chamber microbial fuel cell. International Journal of Hydrogen Energy, 41(2), 1237–1247.
  29. You, S., Zhao, Q., Zhang, J., Jiang, J., Zhao, S. (2007) A microbial fuel cell using permanganate as the cathodic electron acceptor. Journal of Power Sources. 162, 1409-1415
  30. SNI 6989.72:2009. Cara uji Kebutuhan Oksigen Biokimia (Biochemical Oxygen Demand/BOD).
  31. SNI 6989.73:2009. Cara uji Chemical Oxygen Demand (COD)
  32. SNI 06-6989.11-2004.Cara uji derajat keasaman (pH)
  33. SNI 6989.59:2008. Teknik Pengambilan Sampel