skip to main content

Design of Optical Collimator System for Vehicle Speed Gun using Non-Imaging Optics

1Faculty of Vehicle and Energy Engineering, Ho Chi Minh City University of Technology and Education – HCMUTE, Ho Chi Minh, Viet Nam

2Energy Management Department, Chez Bong Co. Ltd, Ho Chi Minh City, Viet Nam

3Department of Information and Communication Engineering, Myongji University, Yongin, South Korea

Received: 15 Oct 2022; Revised: 7 Jan 2023; Accepted: 2 Feb 2023; Available online: 10 Feb 2023; Published: 15 Mar 2023.
Editor(s): Soulayman Soulayman
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Vehicle speed guns are usually used in normal sunlight conditions (daytime). If we want to use vehicle speed guns in low light conditions (nighttime), the illuminator is needed to provide sufficient light for the vehicle speed gun to take photos. The illuminator must fulfill two requirements: (i) using the infrared wavelength to ensure that the driver is not startled by dazzling eyes by the illuminator of the proposed speed gun system and (ii) high energy efficiency to make the illuminator compact leading to the use a small battery system to improve the portable of the proposed vehicle speed gun. In this study, an illuminator using a collimator system designed by using non-imaging optics is introduced. LEDs with infrared wavelength are chosen from the library of LightToolsTM, the structure of collimated is designed to transfer the illumination from the LEDs array to a square area of 3x3 m2 to cover the vehicle to detect the vehicle number plate. The design process is built based on the conservation of optical path length in the Matlab program. After that, the designed collimator is simulated in LightToolsTM software. The promising results of the simulation in LightToolsTM show that the collimator can efficiently transfer light from the LED array to the target area with a uniformity of about 70 % and optical efficiency of about 80 %.
Fulltext View|Download
Keywords: Illumination; Collimator; Vehicles speed gun; LightTools; non-imaging optics; Matlab programing; Non-imaging optics

Article Metrics:

  1. Abdel-wahed, T., & El Esawey, M. (2022). A Comparison of Daytime and Nighttime Operating Speed on Rural Multi-Lane Highway Sections in Egypt. Sohag Engineering Journal, 2(2), 66-78. https://doi.org/10.21608/sej.2022.135873.1012
  2. Adnan, M. A., Sulaiman, N., Zainuddin, N. I., & Besar, T. B. H. T. (2013, April). Vehicle speed measurement technique using various speed detection instrumentation. In 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC) (pp. 668-672). IEEE. https://doi.org/10.1109/BEIAC.2013.6560214
  3. Ali, U., Karim, K. J. B. A., & Buang, N. A. (2015). A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polymer Reviews, 55(4), 678-705. https://doi.org/10.1080/15583724.2015.1031377
  4. Bassani, M., Catani, L., Cirillo, C., & Mutani, G. (2016). Night-time and daytime operating speed distribution in urban arterials. Transportation research part F: traffic psychology and behaviour, 42, 56-69. https://doi.org/10.1016/j.trf.2016.06.020
  5. Benı´tez, P., Min˜ano, J. C., Blen, J., Mohedano, R. N., Chaves, J. L., Dross, O., ... & Falicoff, W. (2004). Simultaneous multiple surface optical design method in three dimensions. Optical Engineering, 43(7), 1489-1502. https://doi.org/10.1117/1.1752918
  6. Benitez, P., Minano, J. C., Blen, J., Mohedano, R., Chaves, J., Dross, O., ... & Falicoff, W. (2004, January). SMS design method in 3D geometry: examples and applications. In Nonimaging Optics: Maximum Efficiency Light Transfer VII (Vol. 5185, pp. 18-29). SPIE. https://doi.org/10.1117/12.506857
  7. Buljan, M., Mendes-Lopes, J., Benítez, P., & Miñano, J. C. (2014). Recent trends in concentrated photovoltaics concentrators’ architecture. Journal of Photonics for Energy, 4(1), 040995-040995. https://doi.org/10.1117/1.JPE.4.040995
  8. Chaves, J. (2008). Introduction to nonimaging optics. CRC press. DOI: https://doi.org/10.1201/9781420054323
  9. Chen, C., & Zhang, X. (2014). Design of optical system for collimating the light of an LED uniformly. JOSA A, 31(5), 1118-1125. https://doi.org/10.1364/JOSAA.31.001118
  10. Cheng, H., Xu, C., Jing, X., & Tam, H. Y. (2015). Design of compact LED free-form optical system for aeronautical illumination. Applied optics, 54(25), 7632-7639. https://doi.org/10.1364/AO.54.007632
  11. Chong, K. K., Siaw, F. L., Wong, C. W., & Wong, G. S. (2009). Design and construction of non-imaging planar concentrator for concentrator photovoltaic system. Renewable Energy, 34(5), 1364-1370. https://doi.org/10.1016/j.renene.2008.09.001
  12. Dhahir, B., & Hassan, Y. (2019). Using horizontal curve speed reduction extracted from the naturalistic driving study to predict curve collision frequency. Accident Analysis & Prevention, 123, 190-199. https://doi.org/10.1016/j.aap.2018.11.020
  13. Dross, O., Mohedano, R., Benitez, P., Minano, J. C., Chaves, J., Blen, J., ... & Munoz, F. (2004, September). Review of SMS design methods and real world applications. In Nonimaging optics and efficient illumination systems (Vol. 5529, pp. 35-47). SPIE. https://doi.org/10.1117/12.561336
  14. Gul, M., Kotak, Y., & Muneer, T. (2016). Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation, 34(4), 485-526.Martin, K.L. An overview of daylighting systems. Sol. Energy 2002, 73, 77–82. https://doi.org/10.1177/0144598716650552
  15. Gutiérrez, M., Miñano, J. C., Vega, C., & Benítez, P. (1996). Application of Lorentz geometry to nonimaging optics: new three-dimensional ideal concentrators. JOSA A, 13(3), 532-540. https://doi.org/10.1364/JOSAA.13.000532
  16. Hamelmann, P., Vullings, R., Kolen, A. F., Bergmans, J. W., van Laar, J. O., Tortoli, P., & Mischi, M. (2019). Doppler ultrasound technology for fetal heart rate monitoring: a review. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 67(2), 226-238. https://doi.org/10.1109/TUFFC.2019.2943626
  17. Hassan, S. A., Wong, L., Mashros, N., Alhassan, H. M., Sukor, N. S. A., Rohani, M., & Minhans, A. (2016). Operating speed of vehicles during rainfall at night: Case study in Pontian, Johor. Jurnal Teknologi, 78(7-2)
  18. Koshel, R. J. (Ed.). (2012). Illumination Engineering: design with nonimaging optics. John Wiley & Sons. https://doi.org/10.1002/9781118462539
  19. Kreifeldt, Erik. "New laser speed gun detector thwarts speed measurement." Optics and Photonics News 7.10 (1996): 6-6. https://doi.org/10.1364/OPN.7.10.000006
  20. Kumar, A., Jaiswal, A., Jaiswal, N., & Sharma, R. (2014). Vehicles anti-collision System. International Journal of Computer Applications, 99(19), 7-9. https://research.ijcaonline.org/volume99/number19/pxc3897635.pdf
  21. Kumar, Vimal, Shankar C. Subramanian, and Rajesh Rajamani. "Vehicle tracking for heavy road vehicle collision avoidance with an inexpensive solid state laser sensor." 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019. https://doi.org/10.1109/ITSC.2019.8917420
  22. Liu, B., Sang, X., Yu, X., Gao, X., Liu, L., Gao, C., ... & Du, J. (2019). Time-multiplexed light field display with 120-degree wide viewing angle. Optics Express, 27(24), 35728-35739. https://doi.org/10.1364/OE.27.035728
  23. Miñano, J. C., Mohedano, R., & Benítez, P. (2015). Nonimaging Optics. The Optics Encyclopedia
  24. Mohedano, Rubén, and Ralf Leutz. "CPV optics." Handbook of concentrator photovoltaic technology (2016): 187-238
  25. Muzal, M., Mierczyk, Z., Zygmunt, M., Wojtanowski, J., & Piotrowski, W. (2016, December). Measurement of vehicles speed with full waveform lidar. In Laser Technology 2016: Progress and Applications of Lasers (Vol. 10159, pp. 351-362). SPIE. https://doi.org/10.1117/12.2262839
  26. Mandava, M., Gammenthaler, R. S., & Hocker, S. F. (2018, August). Vehicle speed enforcement using absolute speed handheld lidar. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (pp. 1-5). IEEE. https://doi.org/10.1109/VTCFall.2018.8690893
  27. Nguyen, V. C., & Dinh, D. K. (2014, October). Length and speed detection using microwave motion sensor. In 2014 International Conference on Advanced Technologies for Communications (ATC 2014) (pp. 371-376). IEEE. https://doi.org/10.1109/ATC.2014.7043414
  28. O'Gallagher, J. (2008). Nonimaging optics in solar energy (Vol. 2). Morgan & Claypool Publishers.
  29. Pham, T. T., Vu, N. H., & Shin, S. (2017). Daylighting system based on novel design of linear Fresnel lens. Buildings, 7(4), 92. https://doi.org/10.3390/buildings7040092
  30. Pham, T. T., Vu, N. H., & Shin, S. (2018). Design of curved Fresnel lens with high performance creating competitive price concentrator photovoltaic. Energy Procedia, 144, 16-32. https://doi.org/10.1016/j.egypro.2018.06.004
  31. Pham, T. T., Vu, N. H., & Shin, S. (2019). Novel design of primary optical elements based on a linear fresnel lens for concentrator photovoltaic technology. Energies, 12(7), 1209. https://doi.org/10.3390/en12071209
  32. Ryu, K., Rhee, J. G., Park, K. M., & Kim, J. (2006). Concept and design of modular Fresnel lenses for concentration solar PV system. Solar energy, 80(12), 1580-1587. https://doi.org/10.1016/j.solener.2005.12.006
  33. Setiyono, B., Ratna, D., Ilmi, M. F., & Usadha, I. G. N. R. (2021, February). Estimation of Vehicle Speed at Night Based on Rear Lights. In Journal of Physics: Conference Series (Vol. 1752, No. 1, p. 012087). IOP Publishing. https://doi.org/10.1088/1742-6596/1752/1/012087
  34. Tsangrassoulis, A. A review of innovative daylighting systems. Adv. Build. Energy Res. 2008, 2, 33–56. https://doi.org/10.3763/aber.2008.0202
  35. Ullah, I., & Shin, S. (2014). Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings. Energy and buildings, 72, 246-261. https://doi.org/10.1016/j.enbuild.2013.12.031
  36. Ullah, I., & Shin, S. Y. (2012). Development of optical fiber-based daylighting system with uniform illumination. Journal of the Optical Society of Korea, 16(3), 247-255. https://doi.org/10.1109/OECC.2012.6276589
  37. Vidal, E., Otaduy, D., González, F., Saiz, J. M., & Moreno, F. (2009, August). Design and optimization of a collimating optical system for high divergence LED light sources. In Current Developments in Lens Design and Optical Engineering X (Vol. 7428, pp. 115-124). SPIE. https://doi.org/10.1117/12.825287
  38. Vu, N. H., Pham, T. T., & Shin, S. (2017). LED uniform illumination using double linear fresnel lenses for energy saving. Energies, 10(12), 2091. https://doi.org/10.3390/en10122091
  39. Winston, R., Jiang, L., & Ricketts, M. (2018). Nonimaging optics: a tutorial. Advances in Optics and Photonics, 10(2), 484-511. https://doi.org/10.1364/AOP.10.000484
  40. Winston, R., Miñano, J. C., & Benitez, P. G. (2005). Nonimaging optics. Elsevier. ISBN: 978-0-12-759751-5 https://doi.org/10.1016/B978-0-12-759751-5.X5000-3
  41. Wu, J., Liu, Z., Li, J., Gu, C., Si, M., & Tan, F. (2009, July). An algorithm for automatic vehicle speed detection using video camera. In 2009 4th International Conference on Computer Science & Education (pp. 193-196). IEEE. https://doi.org/10.1109/ICCSE.2009.5228496

Last update:

No citation recorded.

Last update: 2024-04-19 11:59:03

No citation recorded.