skip to main content

Modelling the Optimal Electricity Mix for Togo by 2050 Using OSeMOSYS

1Centre d'Excellence Régional pour la Maîtrise de l'Electricité (CERME), Université de Lomé, 01 BP 1515 Lomé 01, Togo

2Département de Génie Electrique, École Nationale Supérieure d'Ingénieurs (ENSI), Université de Lomé, 01 BP 1515 Lomé 01, Togo

3Laboratoire de Recherche en Sciences de l’Ingénieur (LARSI), Département de Génie Électrique, Institut Universitaire de Technologie, Université Nazi BONI, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso

Received: 6 Nov 2022; Revised: 12 Feb 2023; Accepted: 24 Feb 2023; Available online: 28 Feb 2023; Published: 15 Mar 2023.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This work uses bottom-up modeling to explore the future evolution trajectories of the electricity mix in Togo by 2050. The objective is to investigate the evolution of the mix and the future investments needed to achieve the sustainable energy and climate change goals. Three scenarios were developed using OSeMOSYS. The reference scenario, named Business As Usual, closely reflects the evolution of the Togolese electricity sector under a business-as-usual assumption and planned capacity increases up to 2030. The second scenario, Net Zero by 2050, is based on the first scenario while ensuring that CO2 emissions cancel out in 2050 by following the Weibull law. The third scenario called Emission Penalty aims not only at the integration of renewable energies like the second one but also at the least cost electricity mix if emission penalties are applied. The results of the cost optimization indicate that photovoltaic and importation are the optimal choices ahead of gas and hydropower. The renewable energy aspect of the electricity mix is more highlighted in the last scenario. At the same time, the model shows that greater energy independence is achievable at the cost of a transitory increase in the cost of the electricity system. A tenfold investment effort is needed in 2030 to ensure either continuity of the status quo or a shift in strategy.

Fulltext View|Download
Keywords: Bottom-up modeling; renewable energy; emission penalties; optimization; Togo
Funding: Centre d'Excellence Régional pour la Maîtrise de l'Electricité (CERME), Université de Lomé

Article Metrics:

  1. African Development Bank (2019). Togo - Projet d’Électrification Rurale CIZO – Rapport final CPR; Available from https://www.afdb.org/fr/documents/togo-projet-delectrification-rurale-cizo-rapport-final-cpr [Accessed 17 Sep. 2022]
  2. Agbossou A., Fontodji J.K., Ayassou K., Tchegueni S., Segla K.N., Adjonou K., Bokovi Y., Ajayon A.-L., Polo-Akpisso A., Kuylenstierna J.C.I., Malley C.S., Michalopoulou E. & Slater J. (2022). Integrated climate change and air pollution mitigation assessment for Togo. Science of The Total Environment, 844, 157107; https://doi.org/10.1016/j.scitotenv.2022.157107
  3. Ahmed S., Mahmood A., Hasan A., Sidhu G.A.S. & Butt M.F.U. (2016). A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities. Renewable and Sustainable Energy Reviews, 57, 216–225; https://doi.org/10.1016/j.rser.2015.12.191
  4. Allington L., Cannone C., Pappis I., Cervantes Barron K., Usher W., Pye S., Brown E., Howells M., Walker M., Ahsan A., Charbonnier F., Halloran C., Hirmer S., Taliotis C., Sundin C., Sridha V., Ramos E., Brinkerink M., Deane P. & Rogner H. (2021). Selected ‘Starter Kit’ energy system modelling data for Togo; https://doi.org/10.21203/rs.3.rs-480160/v2
  5. Alova G., Trotter P.A. & Money A. (2021). A machine-learning approach to predicting Africa’s electricity mix based on planned power plants and their chances of success. Nature Energy, 6 (2), 158–166; https://doi.org/10.1038/s41560-020-00755-9
  6. Amou A., Ouro-Djobo S. & Napo K. (2010). Solar Irradiation in Togo. International Scientific Journal for Alternative Energy and Ecology, (2), 14–21; https://cyberleninka.ru/article/n/solar-irradiation-in-togo
  7. Anna Zygierewicz & Lucia Salvador Sanz (2021). Renewable Energy Directive, Revision of Directive (EU) 2018/2001. EPRS | European Parliamentary Research Service.; Available from https://euagenda.eu/upload/publications/eprs-bri2021662619-en.pdf
  8. Antonanzas-Torres F., Antonanzas J. & Blanco-Fernandez J. (2021). State-of-the-Art of Mini Grids for Rural Electrification in West Africa. Energies, 14 (4), 990; https://doi.org/10.3390/en14040990
  9. Anwar N. & Elfaki K.E. (2021). Examining the Relationship Between Energy Consumption, Economic Growth and Environmental Degradation in Indonesia: Do Capital and Trade Openness Matter? International Journal of Renewable Energy Development, 10 (4), 769–778; https://doi.org/10.14710/ijred.2021.37822
  10. Autorité de Règlementation du Secteur de l’Electricité (2022). Rapport annuel ARSE 2020; Available from https://www.arse.tg/le-rapport-annuel-arse-2020-disponible/ [Accessed 8 Aug. 2022]
  11. Baležentis T. & Štreimikienė D. (2019). Sustainability in the Electricity Sector through Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China. Energies, 12 (6), 1142; https://doi.org/10.3390/en12061142
  12. Battula A.R., Vuddanti S. & Salkuti S.R. (2021). Review of Energy Management System Approaches in Microgrids. Energies, 14 (17), 5459; https://doi.org/10.3390/en14175459
  13. Becker P. (2010). The energy concept of Federal Government; Das Energiekonzept der Bundesregierung; Available from https://www.osti.gov/etdeweb/biblio/21397380
  14. Chambile E., Ijumba N., Mkandawire B. & Hakizimana J. de D. (2021). Modelling of environmental emission in Kenyan, Rwandan, and Tanzanian electrical power systems. Journal of Cleaner Production, 312, 127830; https://doi.org/10.1016/j.jclepro.2021.127830
  15. Chammas M., Pena Verrier G., Bideux T., Humberset L., Ridremont T. & Arnaud B. (2022). Modeling and optimization of the French and European electricity mix 2020-2060; Available from https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=53029753
  16. Denholm P., Arent D.J., Baldwin S.F., Bilello D.E., Brinkman G.L., Cochran J.M., Cole W.J., Frew B., Gevorgian V., Heeter J., Hodge B.-M.S., Kroposki B., Mai T., O’Malley M.J., Palmintier B., Steinberg D. & Zhang Y. (2021). The challenges of achieving a 100% renewable electricity system in the United States. Joule, 5 (6), 1331–1352; https://doi.org/10.1016/j.joule.2021.03.028
  17. Ezzahid E. & Icharmouhene R. (2021). Le mix électrique optimal au Maroc; Available from http://lnnk.in/ddeR
  18. Foley A.M., Ó Gallachóir B.P., Hur J., Baldick R. & McKeogh E.J. (2010). A strategic review of electricity systems models. Energy, 35 (12), 4522–4530; https://doi.org/10.1016/j.energy.2010.03.057
  19. Fuso Nerini F., Tomei J., To L.S., Bisaga I., Parikh P., Black M., Borrion A., Spataru C., Castán Broto V., Anandarajah G., Milligan B. & Mulugetta Y. (2018). Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nature Energy, 3 (1), 10–15; https://doi.org/10.1038/s41560-017-0036-5
  20. Gardumi F., Welsch M., Howells M. & Colombo E. (2019). Representation of Balancing Options for Variable Renewables in Long-Term Energy System Models: An Application to OSeMOSYS. Energies, 12 (12), 2366; https://doi.org/10.3390/en12122366
  21. Guenoukpati A., Salami A.A., Kodjo M.K. & Napo K. (2020). Estimating Weibull Parameters for Wind Energy Applications using Seven Numerical Methods: Case studies of three costal sites in West Africa. International Journal of Renewable Energy Development, 9 (2), 217–226; https://doi.org/10.14710/ijred.9.2.217-226
  22. Hansen K., Mathiesen B.V. & Skov I.R. (2019). Full energy system transition towards 100% renewable energy in Germany in 2050. Renewable and Sustainable Energy Reviews, 102, 1–13; https://doi.org/10.1016/j.rser.2018.11.038
  23. Herbert A.-S., Azzaro-Pantel C. & Le Boulch D. (2016). A typology for world electricity mix: Application for inventories in Consequential LCA (CLCA). Sustainable Production and Consumption, 8, 93–107; https://doi.org/10.1016/j.spc.2016.09.002
  24. Horowitz C.A. (2016). Paris Agreement. International Legal Materials, 55 (4), 740–755; https://doi.org/10.1017/S0020782900004253
  25. Howells M., Rogner H., Strachan N., Heaps C., Huntington H., Kypreos S., Hughes A., Silveira S., DeCarolis J., Bazillian M. & Roehrl A. (2011). OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development. Energy Policy, 39 (10), 5850–5870; https://doi.org/10.1016/j.enpol.2011.06.033
  26. IEA I.E.A. (2022). Global Energy Review: CO2 Emissions in 2021, Global emissions rebound sharply to highest ever level; Available from https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 [Accessed 28 Jan. 2023]
  27. International Energy Agency (IEA), International Renewable Energy Agency (IRENA), United Nations Statistics Division (UNSD), World Bank & World Health Organization (WHO) (2022). Tracking SDG7, The Energy Progress Report 2022; Available from https://trackingsdg7.esmap.org/downloads
  28. IRENA (2021). IRENA Renewable Readiness Assessment: Paraguay; Available from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Sep/IRENA_RRA_Paraguay_2021.pdf
  29. Kansongue N., Njuguna J. & Vertigans S. (2022). An assessment of renewable energy development in energy mix for Togo. International Journal of Sustainable Energy, 41 (8), 1037–1056; https://doi.org/10.1080/14786451.2021.2023150
  30. KFW, GIZ, & IRENA (2020). La transition vers les énergies renouvelables en Afrique : Renforcer l’accès, la résilience et la prospérité; Available from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/March/Renewable_Energy_Transition_Africa_2021_FR.pdf?la=en&hash=F718071FC26822A39554DE26CEAB37FAD6ABE2C9
  31. Kitegi M.S.P., Lare Y. & Coulibaly O. (2022). Potential for Green Hydrogen Production from Biomass, Solar and Wind in Togo. Smart Grid and Renewable Energy, 13 (2), 17–27; https://doi.org/10.4236/sgre.2022.132002
  32. Kyriakopoulos G.L. & Arabatzis G. (2016). Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renewable and Sustainable Energy Reviews, 56, 1044–1067; https://doi.org/10.1016/j.rser.2015.12.046
  33. Kyriakopoulos G.L., Arabatzis G., Tsialis P. & Ioannou K. (2018). Electricity consumption and RES plants in Greece: Typologies of regional units. Renewable Energy, 127, 134–144; https://doi.org/10.1016/j.renene.2018.04.062
  34. Lima M.A., Mendes L.F.R., Mothé G.A., Linhares F.G., de Castro M.P.P., da Silva M.G. & Sthel M.S. (2020). Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environmental Development, 33, 100504; https://doi.org/10.1016/j.envdev.2020.100504
  35. Lipp J. (2007). Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom. Energy Policy, 35 (11), 5481–5495; https://doi.org/10.1016/j.enpol.2007.05.015
  36. Lu Y., Khan Z.A., Alvarez-Alvarado M.S., Zhang Y., Huang Z. & Imran M. (2020). A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability, 12 (12), 5078; https://doi.org/10.3390/su12125078
  37. Ministère de l’environnement, du développement durable et de la protection de la nature, Agence nationale de gestion de l’environnement A. & Projet d’amélioration du système d’information environnementale du Togo P. (2020). Résume du premier rapport sur l’état de l’environnement du Togo (REET) à l’ intention des décideurs; Available from https://rb.gy/akxy8i
  38. Ministère des Mines et de l’Energie, CEREEC & SE4ALL (2015). Plan d’Actions National des Energies Renouvelables (PANER); Available from https://www.se4all-africa.org/fileadmin/uploads/se4all/Documents/Country_PANER/Togo_Plan_d_Actions_National_des_Energies_Renouvelables.pdf
  39. Nguyen H.P., Nguyen P.Q.P. & Nguyen T.P. (2022). Green Port Strategies in Developed Coastal Countries as Useful Lessons for the Path of Sustainable Development: A case study in Vietnam. International Journal of Renewable Energy Development, 11 (4), 950–962; https://doi.org/10.14710/ijred.2022.46539
  40. Ntanos S., Skordoulis M., Kyriakopoulos G., Arabatzis G., Chalikias M., Galatsidas S., Batzios A. & Katsarou A. (2018). Renewable Energy and Economic Growth: Evidence from European Countries. Sustainability, 10 (8), 2626; https://doi.org/10.3390/su10082626
  41. Patchali T.E., Oyewola O.M., Ajide O.O., Matthew O.J., Salau T.A.O. & Adaramola M.S. (2022). Assessment of global solar radiation estimates across different regions of Togo, West Africa. Meteorology and Atmospheric Physics, 134 (2), 26; https://doi.org/10.1007/s00703-021-00856-4
  42. Prognos A.G., Schlesinger M., Dietmar P.D. & Lutz C. (2010). Energieszenarien für ein Energiekonzept der Bundesregierung; Available from https://www.dieter-bouse.de/app/download/5793416411/BMWI_Energie_Szenarien+EK+D+bis+2050,+Ausgabe+8-+2010.pdf
  43. Quevedo J. & Moya I.H. (2022). Modeling of the dominican republic energy systems with OSeMOSYS to assess alternative scenarios for the expansion of renewable energy sources. Energy Nexus, 6, 100075; https://doi.org/10.1016/j.nexus.2022.100075
  44. Ritchie H., Roser M. & Rosado P. (2022). South Africa: Energy Country Profile; Available from https://ourworldindata.org/energy/country/south-africa
  45. Salami A.A., Ajavon A.S.A., Kodjo M.K. & Bedja K.-S. (2016). Evaluation of wind potential for an optimum choice of wind turbine generator on the sites of Lomé, Accra, and Cotonou located in the gulf of Guinea. International Journal of Renewable Energy Development, 5 (3), 211–223; https://doi.org/10.14710/ijred.5.3.211-223
  46. Salami A.A., Ouedraogo S., Kodjoa K.M. & Ajavona A.S.A. (2022). Influence of the Random Data Sampling in Estimation of Wind Speed Resource: Case Study. International Journal of Renewable Energy Development, 11 (1), 133–143; https://doi.org/10.14710/ijred.2022.38511
  47. Salkuti S.R. (2021). Energy storage and electric vehicles: technology, operation, challenges, and cost-benefit analysis. International Journal of Advanced Computer Science and Applications, 12 (4); https://doi.org/10.14569/IJACSA.2021.0120406
  48. Skjærseth J.B. & Rosendal K. (2022). Implementing the EU renewable energy directive in Norway: from Tailwind to Headwind. Environmental Politics, 0 (0), 1–22; https://doi.org/10.1080/09644016.2022.2075153
  49. Souza N.R.D. de, Souza A., Ferreira Chagas M., Hernandes T.A.D. & Cavalett O. (2022). Addressing the contributions of electricity from biomass in Brazil in the context of the Sustainable Development Goals using life cycle assessment methods. Journal of Industrial Ecology, 26 (3), 980–995; https://doi.org/10.1111/jiec.13242
  50. Sovacool B.K. (2008). Valuing the greenhouse gas emissions from nuclear power: A critical survey. Energy Policy, 36 (8), 2950–2963; https://doi.org/10.1016/j.enpol.2008.04.017
  51. Stefanelli R.D., Walker C., Kornelsen D., Lewis D., Martin D.H., Masuda J., Richmond C.A.M., Root E., Tait Neufeld H. & Castleden H. (2019). Renewable energy and energy autonomy: how Indigenous peoples in Canada are shaping an energy future. Environmental Reviews, 27 (1), 95–105; https://doi.org/10.1139/er-2018-0024
  52. Swain R.B. & Karimu A. (2020). Renewable electricity and sustainable development goals in the EU. World Development, 125, 104693; https://doi.org/10.1016/j.worlddev.2019.104693
  53. Syromyatnikov D., Druzyanova V., Beloglazov A., Bakshtanin A. & Matveeva T. (2021). Evaluation of the Economic Profitability of Using Renewable Energy Sources in Agro-Industrial Companies. International Journal of Renewable Energy Development, 10 (4), 827–837; https://doi.org/10.14710/ijred.2021.37908
  54. Thapar S., Sharma S. & Verma A. (2016). Economic and environmental effectiveness of renewable energy policy instruments: Best practices from India. Renewable and Sustainable Energy Reviews, 66, 487–498; https://doi.org/10.1016/j.rser.2016.08.025
  55. United Nations (2021). Rapport sur les objectifs de développement durable 2021; Available from https://unstats.un.org/sdgs/report/2021/The-Sustainable-Development-Goals-Report-2021_French.pdf
  56. Washburn C. & Pablo-Romero M. (2019). Measures to promote renewable energies for electricity generation in Latin American countries. Energy Policy, 128, 212–222; https://doi.org/10.1016/j.enpol.2018.12.059
  57. World Bank (2022). Accès à l’électricité (% de la population) - Togo | Data; Available from https://donnees.banquemondiale.org/indicator/EG.ELC.ACCS.ZS?locations=TG
  58. Wright J.G., Bischof-Niemz T., Calitz J.R., Mushwana C. & van Heerden R. (2019). Long-term electricity sector expansion planning: A unique opportunity for a least cost energy transition in South Africa. Renewable Energy Focus, 30, 21–45; https://doi.org/10.1016/j.ref.2019.02.005
  59. Wüstenhagen R. & Bilharz M. (2006). Green energy market development in Germany: effective public policy and emerging customer demand. Energy Policy, 34 (13), 1681–1696; https://doi.org/10.1016/j.enpol.2004.07.013
  60. Yeganyan R. (2021). Modelling pathways to energy security in Armenia’s electricity sector using OSeMOSYS (OpenSource Energy Modelling System); Available from https://spiral.imperial.ac.uk/bitstream/10044/1/94704/2/Yeganyan-R-2021-CEP-MSc-Thesis.pdf
  61. Zhong J., Bollen M. & Rönnberg S. (2021). Towards a 100% renewable energy electricity generation system in Sweden. Renewable Energy, 171, 812–824; https://doi.org/10.1016/j.renene.2021.02.153

Last update:

No citation recorded.

Last update: 2024-06-12 22:20:46

No citation recorded.