skip to main content

Experimental thermal and electrical performances of a PVT-air collector coupled to a humidification-dehumidification (HDH) cycle

Mechanical Engineering Department, College of Engineering, Jouf University, Sakaka, Al-Jouf, Saudi Arabia

Received: 15 Jan 2023; Revised: 20 Mar 2023; Accepted: 4 Apr 2023; Available online: 11 Apr 2023; Published: 15 May 2023.
Editor(s): Sebastiano Tomassetti
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Despite their low electrical efficiencies, PVs are widely used to generate electricity from abundant solar energy. In order to maximize the utilization of incident solar energy, PVT collectors have been used to simultaneously generate electricity and thermal energy. Furthermore, combining PVTs with humidification-dehumidification (HDH) cycles can provide electricity and potable water in remote, arid rural areas that are not connected to the grid. In this paper, a PVT-air collector was coupled to an air-heated closed HDH cycle. Air was heated within the PVT collector and humidified by saline water spray inside the humidifier. Fresh water was produced by cooling humid air inside a dehumidifier that is cooled by saline water. The thermal and electrical performances of the PVT-HDH system were experimentally studied and compared to the electrical performance of a PV module with similar characteristics. The results demonstrated a significant decrease in PV temperature within the PVT-HDH system, which resulted in a 20% increase in the output power of the PVT-HDH system at midday compared to the identical PV module. In addition, the PVT-HDH system produced about 3.8 liters of water distillate for a PV module surface area of 1.48 m × 0.68 m, which contributed about 38% to the overall efficiency of the PVT-HDH system.

Fulltext View|Download
Keywords: PVT-air Collector; Thermal Efficiency; Electrical Efficiency; Humidification-Dehumidification.
Funding: Jouf University

Article Metrics:

  1. Abdul-Ganiy, S., Quansah, D. A., Ramde, E. W., Seidu, R. & Adaramola, M. S. (2021). Study effect of flow rate on flat-plate water-based photovoltaic-thermal (PVT) system performance by analytical technique. Journal of Cleaner Production, 321, 128985. https://doi.org/10.1016/j.jclepro.2021.128985
  2. Alami, A.H. (2014). Effects of evaporative cooling on efficiency of photovoltaic modules. Energy Convers. Manage., 77, 668-679. https://doi.org/10.1016/j.enconman.2013.10.019
  3. Anand, B. & Srinivas, T. (2017). Performance Evaluation of Photovoltaic/Thermal–HDH Desalination System. Applied Solar Energy, 53(3), 243-249. https://doi.org/10.3103/S0003701X17030045
  4. Antar, M. A. & Sharqawy, M. H. (2013) Experimental investigations on the performance of an air heated humidification-dehumidification desalination system, Desalination Water Treat., 51, 837-843. http://dx.doi.org/10.1080/19443994.2012.714598
  5. Bacha, H. B. (2013). Dynamic modeling and experimental validation of a water desalination prototype by solar energy using humidification dehumidification process. Desalination, 322, 182-208. http://dx.doi.org/10.1016/j.desal.2013.05.011
  6. Bayrak, F., Oztop, H.F. & Selimefendigil, F. (2019). Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Sol. Energy, 188, 484-494. https://doi.org/10.1016/j.solener.2019.06.036
  7. Brahim, T. & Jemni, A. (2017). Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review. Sol. Energy, 153, 540-561. https://doi.org/10.1016/j.solener.2017.05.081
  8. Browne, M.C., Norton, B. & McCormack, S.J. (2016). Heat retention of a photovoltaic/thermal collector with PCM. Sol. Energy, 133, 533-548. https://doi.org/10.1016/j.solener.2016.04.024
  9. Calise, F., Cappiello, F.L., Vanoli, R. & Vicidomini, M. (2019). Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage. Appl. Energy, 253, 113575. https://doi.org/10.1016/j.apenergy.2019.113575
  10. Deniz, E. & Cinar, S. (2016) Energy, exergy, economic and environmental (4e) analysis of a solar desalination system with humidification-dehumidification. Energy Convers. Manag., 126, 12-19, http://dx.doi.org/10.1016/j.enconman.2016.07.064
  11. Elsafi, A. M. (2017). Integration of humidification-dehumidification desalination and concentrated photovoltaic-thermal collectors: energy and exergy-costing analysis. Desalination, 424, 17-26. https://doi.org/10.1016/j.desal.2017.09.022
  12. Fath, H. E. & Ghazy, A. (2002). Solar Desalination Using Humidification-Dehumidification Technology. Desalination, 142, 119-133. https://doi.org/10.1016/S0011-9164(01)00431-3
  13. Fterich, M., Chouikhi, H., Bentaher & H., Maalej, A. (2018). Experimental parametric study of a mixed-mode forced convection solar dryer equipped with a PV/T air collector. Sol. Energy, 171, 751-760. https://doi.org/10.1016/j.solener.2018.06.051
  14. Gabrielli, P., Gazzani, M., Novati, N., Sutter, L., Simonetti, R., Molinaroli, L., Manzolini, G. & Mazzotti, M. (2019). Combined water desalination and electricity generation through a humidification-dehumidification process integrated with photovoltaic-thermal modules: design, performance analysis and techno-economic assessment. Energy Convers. Manage.: X 1, 100004. https://doi.org/10.1016/j.ecmx.2019.100004
  15. Ghazy, A. & Alrowais, R. (2022) Experimental Performance of Single-Slope Basin Solar Still Coupled with a Humidification–Dehumidification Cycle. Sustainability, 14, 15755. https://doi.org/10.3390/ su142315755
  16. Ghazy, A. & Fath, H. E. (2016). Solar Desalination System of Combined Solar Still and Humidification-Dehumidification Unit. Heat and Mass Transfer, 52(11), 2497-2506. https://doi.org/10.1007/s00231-016-1761-1
  17. Giwa, A., Fath, H. & Hasan, S. W. (2016). Humidification–dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small-scale sustainable water and power production. Desalination, 377, 163-171. https://doi.org/10.1016/j.desal.2015.09.018
  18. Hamed, M. H., Kabeel, A., Omara, Z. & Sharshir, S. (2015) Mathematical and experimental investigation of a solar humidification-dehumidification desalination unit. Desalination, 358, 9-17. http://dx.doi.org/10.1016/j.desal.2014.12.005
  19. He, W., Xu, L. & Han, D. (2016b). Parametric analysis of an air-heated humidification-dehumidification (HDH) desalination system with waste heat recovery. Desalination, 398, 30-38. http://dx.doi.org/10.1016/j.desal.2016.07.016
  20. He, W., Xu, L., Han, D. & Gao, L. (2016a). Performance analysis of an air-heated humidification-dehumidification desalination plant powered by low grade waste heat. Energy Convers. Manag., 118, 12-20. http://dx.doi.org/10.1016/j.enconman.2016.03.073
  21. Herrando, M., Pantaleo, A.M., Wang, K. & Markides, C.N. (2019). Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications. Renew. Energy, 143, 637-647. https://doi.org/10.1016/j.renene.2019.05.004
  22. Jaszczur, M., Teneta, J., Hassan, Q., Majewska, E. & Hanus, R. (2021). An Experimental and Numerical Investigation of Photovoltaic Module Temperature Under Varying Environmental Conditions. Heat Transfer engineering, 42(3-4), 354-367. https://doi.org/10.1080/01457632.2019.1699306
  23. Jazayeri, M., Uysal, S. & Jazayeri, K. (2013). A Simple Matlab/SIMULINK Simulation for PV Modules Based on One-Diode Model. 2013 High Capacity Optical Networks and Emerging/Enabling Technologies, Magosa, Cyprus, 44-50. https://doi.org/10.1109/HONET.2013.6729755
  24. Joshi, A. S., Tiwari, A., Tiwari, G. N., Dincer, I. & Reddy, B. V. (2009). Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system. Int. J. Thermal Sciences, 48, 154-164. https://doi.org/10.1016/j.ijthermalsci.2008.05.001
  25. Li, X., Yuan, G., Wang, Z., Li, H. & Xu, Z. (2014) Experimental study on a humidification and dehumidification desalination system of solar air heater with evacuated tubes. Desalination, 351, 1-8. http://dx.doi.org/10.1016/j.desal.2014.07.008
  26. Mehrotra, S., Rawat, P., Debbarma, M., Sudhakar, K., Centre, E. & Pradesh, M. (2014). Performance of a solar panel with water immersion. Int. J. Sci. Technol., 3, 1161-1172. https://www.ijset.net/journal/350.pdf
  27. Monjezi, A. A., Chen, Y., Vepa, R., Kashyout, A. B., Hassan, G., Fath, H. E., Kassem, A. & Shaheed, M. H. (2020). Development of an off-grid solar energy powered reverse osmosis desalination system for continuous production of freshwater with integrated photovoltaic thermal (PVT) cooling. Desalination, 495, 114679. https://doi.org/10.1016/j.desal.2020.114679
  28. Moss, R.W., Henshall, P., Arya, F., Shire, G.S.F., Hyde, T. & Eames, P.C. (2018). Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels. Appl. Energy, 216, 588-601. https://doi.org/10.1016/j.apenergy.2018.01.001
  29. Narayan, G. P., Sharqawy, M. H., Lienhard V, J. H. & Zubair, S. M. (2010). Thermodynamic analysis of humidification dehumidification desalination cycles. Desalination Water Treat., 16, 339-353. http://dx.doi.org/10.5004/dwt.2010.1078
  30. Naroei, M., Sarhaddi, F. & Sobhnamayan, F. (2018). Efficiency of a photovoltaic thermal stepped solar still: Experimental and numerical analysis. Desalination, 441, 87-95. https://doi.org/10.1016/j.desal.2018.04.014
  31. Nizetic, S., Coko, D., Yadav, A. & Grubisic-Cabo, F. (2016). Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Convers. Manage., 108, 287-296. https://doi.org/10.1016/j.enconman.2015.10.079
  32. Pham, T.T., Vu, N.H. & Shin, S. (2018). Design of curved fresnel lens with high performance creating competitive price concentrator photovoltaic. Energy Procedia, 144, 16-32. https://doi.org/10.1016/j.egypro.2018.06.004
  33. Pourafshar, S. T., Jafarinaemi, K. & Mortezapour, H. (2020). Development of a photovoltaic-thermal solar humidifier for the humidification-dehumidification desalination system coupled with heat pump. Solar Energy, 205, 51-61. https://doi.org/10.1016/j.solener.2020.05.045
  34. Rezvanpour, M., Borooghani, D., Torabi, F. & Pazoki, M. (2020). Using CaCl2⋅6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation. Renew. Energy, 146, 1907-1921. https://doi.org/10.1016/j.renene.2019.07.075
  35. Singh, D.B. (2018). Improving the performance of single slope solar still by including N identical PVT collectors. Applied Thermal Engineering, 131, 167-179. https://doi.org/10.1016/j.applthermaleng.2017.11.146
  36. Singh, N.P. & Reddy, K.S. (2020). Inverse heat transfer technique for estimation of focal flux distribution for a concentrating photovoltaic (CPV) square solar parabola dish collector. Renew. Energy, 145, 2783-2795. https://doi.org/10.1016/j.renene.2019.07.122
  37. Soufari, S., Zamen, M. & Amidpour, M. (2009a) Performance optimization of the humidification-dehumidification desalination process using mathematical programming. Desalination, 237, 305-317. http://dx.doi.org/10.1016/j.desal.2008.01.024
  38. Soufari, S., Zamen, M. & Amidpour, M. (2009b) Experimental validation of an optimized solar humidification-dehumidification desalination unit. Desalination Water Treat., 6, 244-251. http://dx.doi.org/10.5004/dwt.2009.494
  39. Tiwari, G.N., Mishra, A.K., Meraj, Md., Ahmad, A. & Khan, M.E. (2020). Effect of shape of condensing cover on energy and exergy analysis of a PVT-CPC active solar distillation system. Solar Energy, 205, 113-125. https://doi.org/10.1016/j.solener.2020.04.084
  40. Wang, J.-h., Gao, N.-y., Deng, Y. & Li, Y. l. (2012) Solar power-driven humidification-dehumidification (HDH) process for desalination of brackish water. Desalination, 305, 17-23. http://dx.doi.org/10.1016/j.desal.2012.08.008
  41. Widyolar, B.K., Abdelhamid, M., Jiang, L., Winston, R., Yablonovitch, E., Scranton, G., Cygan, D., Abbasi, H. & Kozlov, A. (2017). Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector. Renew. Energy, 101, 1379-1389. https://doi.org/10.1016/j.renene.2016.10.014
  42. Yildirim, C. & Solmus, I. (2014) A parametric study on a humidification-dehumidification (HDH) desalination unit powered by solar air and water heaters. Energy Convers. Manag., 86, 568-575. http://dx.doi.org/10.1016/j.enconman.2014.06.016
  43. Zainal, N. A., Ajisman & Yusoff, A. R. (2016). Modelling of Photovoltaic Module Using Matlab Simulink. IOP Conf. Series: Materials Science and Engineering 114, 012137. https://doi.org/10.1088/1757-899X/114/1/012137
  44. Zamen, M., Amidpour, M. & Soufari, S. (2009) Cost optimization of a solar humidification dehumidification desalination unit using mathematical programming. Desalination, 239, 92-99. http://dx.doi.org/10.1016/j.desal.2008.03.009
  45. Zhani, K., Bacha, H. B. & Damak, T. (2011) Modeling and experimental validation of a humidification-dehumidification desalination unit solar part. Energy, 36 (5), 3159-3169. http://dx.doi.org/10.1016/j.energy.2011.03.005

Last update:

  1. Hybrid thermal desalination systems for sustainable development – A critical review

    S. Rajesh, C. Chiranjeevi. Solar Energy, 270 , 2024. doi: 10.1016/j.solener.2024.112364

Last update: 2024-04-11 19:24:44

No citation recorded.