skip to main content

Energy performance evaluation of a photovoltaic thermal phase change material (PVT-PCM) using a spiral flow configuration

Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Received: 3 Jul 2023; Revised: 4 Aug 2023; Accepted: 15 Aug 2023; Available online: 29 Aug 2023; Published: 1 Sep 2023.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
A relatively new technology, a hybrid photovoltaic thermal (PVT) solar collector, allows for producing electrical and thermal energy.  However, the module heats up more when exposed to sunlight thanks to the PVT collector's incorporation, reducing its efficiency.  Consequently, lowering the operating temperature is crucial for maximizing the system's effectiveness.  This research aims to create a photovoltaic thermal phase change material (PVT-PCM) solar collector and evaluate its energy performance through a controlled laboratory environment.  Two different PVT collector designs, one using water and the other using a phase change material (PCM), were evaluated using a spiral flow configuration.  Under a sun simulator, the PVT solar collector was subjected to 400 W/m2, 600 W/m2, and 800 W/m2 of solar irradiation at three different mass flow rates.  The results showed that under 800 W/m2 of solar irradiation and 0.033 kg/s mass flow rate, the collector using water could only reach an overall maximum efficiency of 64.34 %, whereas the PVT-PCM configuration with spiral flow had the maximum performance, with an overall efficiency of 67.63%.
Fulltext View|Download
Keywords: Photovoltaic thermal (PVT); Phase change material (PCM); Solar collector; Spiral flow; Heat transfer

Article Metrics:

  1. Abdullah, A. S., Abou Al-sood, M. M., Omara, Z. M., Bek, M. A., & Kabeel, A. E. (2018). Performance evaluation of a new counter flow double pass solar air heater with turbulators. Solar Energy, 173(August),398–406. https://doi.org/10.1016/j.solener.2018.07.073
  2. Assadeg, J., Sopian, K., Ibrahim, A., Fudholi, A., Fatima, N., Al-Waeli, A. H. A., & Hamid, A. S. Abd. (2023). Thermal and Thermo-hydraulic Performance of Finned Double-Pass Solar Air Collector Utilizing Cylindrical Capsules Nano-Enhanced PCM. International Journal of Renewable Energy Research, 13(1), 125–135. https://doi.org/10.20508/ijrer.v13i1.13880.g8668
  3. Bassam, A. M., Sopian, K., Ibrahim, A., Al-Aasam, A. B., & Dayer, M. (2023). Experimental analysis of photovoltaic thermal collector (PVT) with nano PCM and micro-fins tube counterclockwise twisted tape nanofluid. Case Studies in Thermal Engineering, 45 (November2022),102883. https://doi.org/10.1016/j.csite.2023.102883
  4. Bassam, A. M., Sopian, K., Ibrahim, A., Fauzan, M. F., Al-Aasam, A. B., & Abusaibaa, G. Y. (2023). Experimental analysis for the photovoltaic thermal collector (PVT) with nano PCM and micro-fins tube nanofluid. Case Studies in Thermal Engineering, 41(August 2022), 102579. https://doi.org/10.1016/j.csite.2022.102579
  5. Bilardo, M., Ferrara, M., & Fabrizio, E. (2020). Performance assessment and optimization of a solar cooling system to satisfy renewable energy ratio (RER) requirements in multi-family buildings. Renewable Energy,155,990–1008. https://doi.org/10.1016/j.renene.2020.03.044
  6. Bisengimana, E., Zhou, J., Binama, M., Nyiranzeyimana, G., & Yuan, Y. (2023). Numerical investigation of PVT coverage on an integrated building-solar-heat pump system: Technical and economic study. Solar Energy, 249(December 2022), 507–520. https://doi.org/10.1016/j.solener.2022.12.005
  7. Chaibi, Y., El Rhafiki, T., Simón-Allué, R., Guedea, I., Luaces, S. C., Gajate, O. C., Kousksou, T., & Zeraouli, Y. (2021). Air-based hybrid photovoltaic/thermal systems: A review. Journal of Cleaner Production, 295. https://doi.org/10.1016/j.jclepro.2021.126211
  8. Chandrasekar, M., & Senthilkumar, T. (2021). Five decades of evolution of solar photovoltaic thermal (PVT) technology – A critical insight on review articles. Journal of Cleaner Production, 322(May), 128997. https://doi.org/10.1016/j.jclepro.2021.128997
  9. Chen, H., Wang, Y., Yang, H., Badiei, A., & Li, G. (2022). Experimental investigation and exergy analysis of a high concentrating photovoltaic system integrated with spray cooling. Energy Conversion and Management, 268(April), 115957. https://doi.org/10.1016/j.enconman.2022.115957
  10. Choudhury, C., & Garg, H. P. (1991). Evaluation of a jet plate solar air heater. SolarEnergy,46(4),199–209. https://doi.org/10.1016/0038-092X(91)90064-4
  11. Das, D., Bordoloi, U., Kamble, A. D., Muigai, H. H, Pai, R. K., & Kalita, P. (2021). Performance investigation of a rectangular spiral flow PV/T collector with a novel form-stable composite material. Applied Thermal Engineering, 182(December 2019), 116035. https://doi.org/10.1016/j.applthermaleng.2020.116035
  12. Diwania, S., Agrawal, S., Siddiqui, A. S., & Singh, S. (2020). Photovoltaic – thermal ( PV / T ) technology : a comprehensive review on applications and its advancement. International Journal of Energy and Environmental Engineering, 11(1), 33–54. https://doi.org/10.1007/s40095-019-00327-y
  13. Dwivedi, P., Sudhakar, K., Soni, A., & Solomin, E. (2020). Case Studies in Thermal Engineering Advanced cooling techniques of P . V . modules : A state of art. Case Studies in Thermal Engineering, 21(May), 100674. https://doi.org/10.1016/j.csite.2020.100674
  14. Ewe, W. E., Fudholi., A., Sopian. K., & Asim, N. (2021). Modeling of bifacial photovoltaic-thermal (PVT) air heater with jet plate. International Journal of Heat and Technology, 39(4), 1117–1122. https://doi.org/10.18280/ijht.390409
  15. Ewe, W. E., Fudholi, A., Sopian, K., Moshery, R., Asim, N., Nuriana, W., & Ibrahim, A. (2022). Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector. Energy, 254, 124366. https://doi.org/10.1016/j.energy.2022.124366
  16. Faizal, M., Saidur, R., Mekhilef, S., & Alim, M. A. (2013). Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Conversion and Management, 76, 162–168. https://doi.org/10.1016/j.enconman.2013.07.038
  17. Ghadikolaei, C. S. S. (2020). Solar photovoltaic cells performance improvement by cooling technology : An overall review. International Journal of Hydrogen Energy, 46(18), 10939–10972. https://doi.org/10.1016/j.ijhydene.2020.12.164
  18. Goel, A. K., & Singh, S. N. (2020). Experimental study of heat transfer characteristics of an impinging jet solar air heater with fins. Environment, Development and Sustainability, 22(4), 3641–3653. https://doi.org/10.1007/s10668-019-00360-1
  19. Hamzat, A. K., Sahin, A. Z., Omisanya, M. I., & Alhems, L. M. (2021). Advances in PV and PVT cooling technologies: A review. Sustainable Energy Technologies and Assessments, 47(May), 101360. https://doi.org/10.1016/j.seta.2021.101360
  20. Han, X., Zhao, X., & Chen, X. (2020). Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling. Renewable Energy, 162, 55–70. https://doi.org/10.1016/j.renene.2020.07.131
  21. Ishak, M. A. A. B., Ibrahim, A., Sopian, K., Fauzan, M. F., Rahmat, M. A. A., & Yusaidi, N. J. (2023). Performance and Economic Analysis of a Reversed Circular Flow Jet Impingement Bifacial PVT Solar Collector. International Journal of Renewable Energy Development, 12(4), 780–788. https://doi.org/10.14710/ijred.2023.54348
  22. Ishak, M. A. A. B., Ibrahim, A., Sopian, K., Fauzan, M. F., Rahmat, M. A. A., & Hamid, A. S. A. (2023). Heat Transfer Performance of a Novel Circular Flow Jet Impingement Bifacial Photovoltaic Thermal PVT Solar Collector. International Journal of Renewable EnergyResearch-IJRER,13(2). https://doi.org/10.20508/ijrer.v13i2.13886.g8756
  23. Ishak, M. A. A. B., Ibrahim, A., Sopian, K., Fauzan, M. F., Rahmat, M. A. A., & Hamid, A. S. A. (2023). Classification of Jet Impingement Solar Collectors – A Recent Development in Solar Energy Technology. International Journal of Renewable Energy Research-IJRER, 13(2), 802–817. https://doi.org/10.20508/ijrer.v13i2.13884.g8755
  24. Jain, V. (2019). Fossil Fuels, GHG Emissions and Clean Energy Development: Asian Giants in a Comparative Perspective. Millennial Asia, 10(1), 1–24. https://doi.org/10.1177/0976399619825687
  25. Khodadadi, M., & Sheikholeslami, M. (2022). Heat transfer efficiency and electrical performance evaluation of photovoltaic unit under influence of NEPCM. International Journal of Heat and Mass Transfer, 183, 122232
  26. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122232
  27. Kuczynski, W., & Chliszcz, K. (2023). Energy and exergy analysis of photovoltaic panels in northern Poland. Renewable and Sustainable Energy Reviews, 174(March 2022), 113138. https://doi.org/10.1016/j.rser.2022.113138
  28. Maithani, R., Sharma, S., & Kumar, A. (2021). Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater. Renewable Energy, 179, 84–95. https://doi.org/10.1016/j.renene.2021.07.013
  29. Matheswaran, M. M., Arjunan, T. V., & Somasundaram, D. (2018). Analytical investigation of solar air heater with jet impingement using energy and exergy analysis. Solar Energy, 161(October 2017), 25–37. https://doi.org/10.1016/j.solener.2017.12.036
  30. Mohammed, A., & Bencs, P., (2023). Energy and exergy analysis for photovoltaic modules cooled by evaporative cooling techniques. Energy Reports, 9, 122–132. https://doi.org/10.1016/j.egyr.2022.11.177
  31. Mohammadpour, J., Salehi, F., Sheikholeslami, M., & Lee, A. (2022). A computational study on nanofluid impingement jets in thermal management of photovoltaic panel. Renewable Energy, 189, 970–982. https://doi.org/10.1016/j.renene.2022.03.069
  32. Moshery, R, Chai, T. Y., Sopian, K., Fudholi, A., & Al-Waeli, A. H. A. (2021). Thermal performance of jet-impingement solar air heater with transverse ribs absorber plate. Solar Energy, 214(December 2020), 355–366. https://doi.org/10.1016/j.solener.2020.11.059
  33. Prakash, O., Kumar, A., Samsher., De, K., & Aman, A. (2022). Exergy and energy analysis of sensible heat storage based double pass hybrid solar air heater. Sustainable Energy Technologies and Assessments, 49(December 2020), 101714. https://doi.org/10.1016/j.seta.2021.101714
  34. Rahman, A., Muhammad, N., Haw, L. C., & Ahmad, F., (2021). Optimizing the energy saving potential of public hospital through a systematic approach for green building certification in Malaysia. Journal of Building Engineering, 43(August), 103088. https://doi.org/10.1016/j.jobe.2021.103088
  35. Rahmat, M. A. A., Hamid, A. S. A., Lu, Y., Ishak, M. A. A. B., Suheel, S. Z., Fazlizan, A., & Ibrahim, A. (2022). An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro. Sustainability (Switzerland), 14(20). https://doi.org/10.3390/su142013684
  36. Sharol, A. F., Razak, A. A., Majid, Z. A. A., Azmi, M. A. A., Tarminzi, M. A. S. M., Ming, Y. H., Zakaria, Z. A., Harun, M. A., Fazlizan, A., & Sopian, K. (2022). Effect of thermal energy storage material on the performance of double-pass solar air heater with cross-matrix absorber. Journal of Energy Storage, 51(March), 104494. https://doi.org/10.1016/j.est.2022.104494
  37. Sheikholeslami, M., Farshad, A. S., Ebrahimpour, Z., & Said, Z. (2021). Recent progress on fl at plate solar collectors and photovoltaic systems in the presence of nano fl uid : A review. Journal of Cleaner Production, 293, 126119. https://doi.org/10.1016/j.jclepro.2021.126119
  38. Tao, M., Zhenpeng, L., & Jiaxin, Z. (2019). Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection. Renewable and Sustainable Energy Reviews, 116(September), 109406. https://doi.org/10.1016/j.rser.2019.109406
  39. Tripanagnostopoulos, Y., Nousia, Th., Souliotis, M., & Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar Energy, 72(3), 217–234. https://doi.org/10.1016/S0038-092X(01)00096-2
  40. Wai, O. J., Gunnasegaran, P., & Hasini, H. (2022). Effect of Hybrid Nanofluids Concentration and Swirling Flow on Jet Impingement Cooling. https://doi.org/10.3390/nano12193258
  41. Xu, Hongtao, Wang, N., Zhang, C., Qu, Z., & Karimi, F. (2021). Energy conversion performance of a PV/T-PCM system under different thermal regulation strategies. Energy Conversion and Management, 229(December 2020), 113660. https://doi.org/10.1016/j.enconman.2020.113660

Last update:

  1. The reversed circular flow jet impingement (RCFJI) PV/T collector: Thermohydraulic and electrohydraulic analysis

    Muhammad Amir Aziat Bin Ishak, Adnan Ibrahim. Heat Transfer, 53 (8), 2024. doi: 10.1002/htj.23129
  2. 4E Investigation of a Solar Collector Design Featuring Ribs, Petals, and Helical Twisted Tapes in a Photovoltaic Thermal System

    Banw Omer Ahmed, Adnan Ibrahim, Hariam Luqman Azeez, Mahmoud Jaber, Ali H. A. Al-Waeli, Hasila Jarimi. Arabian Journal for Science and Engineering, 2025. doi: 10.1007/s13369-025-09962-6

Last update: 2025-01-23 08:26:24

No citation recorded.