skip to main content

Effect of natural dye combination and pH extraction on the performance of dye-sensitized photovoltaics solar cell

1Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya, 60231, Indonesia

2Department of Electrical Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Surabaya, 60231, Indonesia

Received: 5 Jul 2023; Revised: 26 Sep 2023; Accepted: 3 Oct 2023; Available online: 16 Oct 2023; Published: 1 Nov 2023.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Dyes are significant components in Dye Sensitized Solar Cell (DSSC) performance because they act as photosensitizers. Natural dye-based DSSC system fabrication innovations continue to be produced in an effort to improve DSSC performance efficiency. In this study, a DSSC system was developed using double components of natural dyes as natural photosensitizers to enhance DSSC efficiency. This method of making natural dye-based DSSC uses a combination of dye extracts from two different dye sources that have the potential as natural photosensitizers in DSSC. The research aims to investigate the impact of the combined use of two natural dyes and pH variations on DSSC performance. DSSC performance measurements encompass the short-circuit current (Isc), open-circuit voltage (Voc), and DSSC efficiency parameters. The obtained results indicate efficiency values for dyes (a) sappan wood/ethanol and turmeric/methanol; (b) turmeric/methanol and beetroot/ethanol; and (c) beetroot/ethanol and turmeric/distilled water. At neutral pH, the efficiency values are 2.09%, 2.10%, and 2.19%, respectively. Meanwhile, at acidic pH of 2.59%; 2.39%; and 2.71%. Notably, the dye efficiency values at acidic pH surpass those found at neutral pH conditions. The highest efficiency is observed in the combination of dye (c) beetroot/ethanol and turmeric/distilled water with efficiency reaching 2.71% at acidic pH.

Fulltext View|Download
Keywords: DSSC; Natural dyes; Photosensitizer; Isc; Voc; Efficiency
Funding: Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia / B/29559/UN38.9/LK.04.00/2022

Article Metrics:

  1. Abdullah, M. ., Syarifah Adilah, M. ., Noorsal, E., Azurahanim, C. A. ., Mamat, M. ., Ahmad, M. ., I.B.S. Banu, I. B. ., & Rusop, M. (2022). Synergistic effect of complementary organic dye co-sensitizers for potential panchromatic light-harvesting of dye-sensitized solar cells. Optical Materials, 133, 113016. https://doi.org/doi: 10.1016/j.optmat.2022.113016
  2. Alirahmi, S. M., Rahmani Dabbagh, S., Ahmadi, P., & Wongwises, S. (2020). Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy. Energy Conversion and Management, 205(October 2019), 112426. https://doi.org/10.1016/j.enconman.2019.112426
  3. Bandara, T. M. W. J., Weerasinghe, A. M. J. S., Dissanayake, M. A. K. L., Senadeera, G. K. R., Furlani, M., Albinsson, I., & Mellander, B. E. (2018). Characterization of poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofiber membrane based quasi solid electrolytes and their application in a dye sensitized solar cell. Electrochimica Acta, 266, 276–283. https://doi.org/10.1016/j.electacta.2018.02.025
  4. Benson, C. R., Kacenauskaite, L., VanDenburgh, K. L., Zhao, W., Qiao, B., Sadhukhan, T., Pink, M., Chen, J., Borgi, S., Chen, C. H., Davis, B. J., Simon, Y. C., Raghavachari, K., Laursen, B. W., & Flood, A. H. (2020). Plug-and-Play Optical Materials from Fluorescent Dyes and Macrocycles. Chem, 6(8), 1978–1997. https://doi.org/10.1016/j.chempr.2020.06.029
  5. Bittau, F., Potamialis, C., Togay, M., Abbas, A., Isherwood, P. J. M., Bowers, J. W., & Walls, J. M. (2018). Analysis and optimisation of the glass/TCO/MZO stack for thin film CdTe solar cells. Solar Energy Materials and Solar Cells, 187(July), 15–22. https://doi.org/10.1016/j.solmat.2018.07.019
  6. Bußmann, A. B., Grünerbel, L. M., Durasiewicz, C. P., Thalhofer, T. A., Wille, A., & Richter, M. (2021). Microdosing for drug delivery application—A review. Sensors and Actuators, A: Physical, 330. https://doi.org/10.1016/j.sna.2021.112820
  7. Cao, H., Tang, X., Tang, H., Yuan, Y., & Wu, J. (2021). Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem Catalysis, 1(3), 523–598. https://doi.org/10.1016/j.checat.2021.04.008
  8. Daoud, A., Cheknane, A., Meftah, A., Nunzi, J. M., Shalabi, M., & Hilal, H. S. (2022). Spatial separation strategies to control charge recombination and dye regeneration in p-type dye sensitized solar cells. Solar Energy, 236, 107–152. https://doi.org/https://doi.org/10.1016/j.solener.2022.02.050
  9. Ganiyu, S. O., Martínez-Huitle, C. A., & Rodrigo, M. A. (2020). Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Applied Catalysis B: Environmental, 270. https://doi.org/10.1016/j.apcatb.2020.118857
  10. Ganta, D., Combrink, K., & Villanueva, R. (2019). Natural dye-sensitized solar cells: Fabrication, characterization, and challenges. In Energy, Environment, and Sustainability (pp. 129–155). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-3302-6_5
  11. Golshan, M., Osfouri, S., Azin, R., Jalali, T., & Moheimani, N. R. (2021). Co-sensitization of natural and low-cost dyes for efficient panchromatic light-harvesting using dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 417(April), 113345. https://doi.org/10.1016/j.jphotochem.2021.113345
  12. Hdom, H. A. D., & Fuinhas, J. A. (2020). Energy production and trade openness: Assessing economic growth, CO2 emissions and the applicability of the cointegration analysis. Energy Strategy Reviews, 30. https://doi.org/10.1016/j.esr.2020.100488
  13. Hitam, C. N. C., & Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of Environmental Management, 258(January), 110050. https://doi.org/10.1016/j.jenvman.2019.110050
  14. Jalali, T., Arkian, P., Golshan, M., Jalali, M., & Osfouri, S. (2020). Performance evaluation of natural native dyes as photosensitizer in dye-sensitized solar cells. Optical Materials, 110(110441), 110441. https://doi: 10.1016/j.optmat.2020.110441
  15. Janjua, M. R. S. A., Khan, M. U., Khalid, M., Ullah, N., Kalgaonkar, R., Alnoaimi, K., Baqader, N., & Jamil, S. (2021). Theoretical and Conceptual Framework to Design Efficient Dye-Sensitized Solar Cells (DSSCs): Molecular Engineering by DFT Method. Journal of Cluster Science, 32(2), 243–253. https://doi.org/10.1007/s10876-020-01783-x
  16. Ji, L., Yuxuan, W., Sun, L., Xiaohu, Z., Wang, X., Xie, Y., Guo, J., & Huang, G. (2022). Solar photovoltaics can help China fulfill a net-zero electricity system by 2050 even facing climate change risks. Resources, Conservation and Recycling, 186, 106596. https://doi.org/https://doi.org/10.1016/j.resconrec.2022.106596
  17. Junger, Udomrungkhajornchai, Grimmelsmann, Blachowicz, & Ehrmann. (2019). Effect of caffeine copigmentation of anthocyanin dyes on DSSC efficiency. Materials, 12(17), 2692. https://doi: 10.3390/ma12172692
  18. Kabir, F., Bhuiyan, M. M. H., Manir, M. S., Rahaman, M. S., Khan, M. A., & Ikegami, T. (2019). Development of dye-sensitized solar cell based on combination of natural dyes extracted from Malabar spinach and red spinach. Results in Physics, 14(June), 102474. https://doi.org/10.1016/j.rinp.2019.102474
  19. Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, A. M., & Karuppuchamy, S. (2020). Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of Alloys and Compounds, 828, 154281. https://doi.org/10.1016/j.jallcom.2020.154281
  20. Kebede, A. A., Kalogiannis, T., Van Mierlo, J., & Berecibar, M. (2022). A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renewable and Sustainable Energy Reviews, 159, 112213. https://doi.org/10.1016/j.rser.2022.112213
  21. Khan, M. I., Arshad, H., Rizwan, M., Gillani, S. S. A., Zafar, M., Ahmed, S., & Shakil, M. (2020). Investigation of structural, electronic, magnetic and mechanical properties of a new series of equiatomic quaternary Heusler alloys CoYCrZ (Z = Si, Ge, Ga, Al): A DFT study. Journal of Alloys and Compounds, 819, 152964. https://doi.org/10.1016/j.jallcom.2019.152964
  22. Kusumawati, N., Setiarso, P., & Muslim, S. (2018). Polysulfone/polyvinylidene fluoride composite membrane: Effect of coating dope composition on membrane characteristics and performance. Rasayan Journal of Chemistry, 11(3), 1034–1041. https://doi.org/10.31788/RJC.2018.1133020
  23. Kusumawati, N., Setiarso, P., Muslim, S., & Purwidiani, N. (2018). Synergistic ability of PSf and pvdf to develop high-performance PSf/PVDF coated membrane for water treatment. Rasayan Journal of Chemistry, 11(1), 260–279. https://doi.org/10.7324/RJC.2018.1112018
  24. Kusumawati, Nita, Setiarso, P., Santoso, A. B., Muslim, S., A’yun, Q., & Putri, M. M. (2023). Characterization of Poly(vinylidene Fluoride) Nanofiber-Based Electrolyte and Its Application to Dye-Sensitized Solar Cell with Natural Dyes. Indonesian Journal of Chemistry, 23(1), 113–126. https://doi.org/10.22146/ijc.75357
  25. Kusumawati, Nita, Setiarso, P., Sianita, M. M., & Muslim, S. (2018). Transport properties, mechanical behavior, thermal and chemical resistance of asymmetric flat sheet membrane prepared from PSf/PVDF blended membrane on gauze supporting layer. Indonesian Journal of Chemistry, 18(2), 257–264. https://doi.org/10.22146/ijc.27272
  26. Li, B., Meng, M., Cui, Y., Wu, Y., Zhang, Y., Dong, H., Zhu, Z., Feng, Y., & Wu, C. (2019). Changing conventional blending photocatalytic membranes (BPMs): Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method. Chemical Engineering Journal, 365(November 2018), 405–414. https://doi.org/10.1016/j.cej.2019.02.042
  27. Mao, W., Zhang, L., Liu, Y., Wang, T., Bai, Y., & Guan, Y. (2021). Facile assembled N, S-codoped corn straw biochar loaded Bi2WO6 with the enhanced electron-rich feature for the efficient photocatalytic removal of ciprofloxacin and Cr(VI). Chemosphere, 263, 127988. https://doi.org/10.1016/j.chemosphere.2020.127988
  28. Maurya, I. C., Singh, S., Srivastava, P., Maiti, B., & Bahadur, L. (2019). Natural dye extract from Cassia fistula and its application in dye-sensitized solar cell: Experimental and density functional theory studies. Optical Materials, 90(October 2018), 273–280. https://doi.org/10.1016/j.optmat.2019.02.037
  29. Mejica, G. F. C., Unpaprom, Y., Balakrishnan, D., Dussadee, N., Buochareon, S., & Ramaraj, R. (2022). Anthocyanin pigment-based dye-sensitized solar cells with improved pH-dependent photovoltaic properties. Sustainable Energy Technologies and Assessments, 51(101971), 101971. https://doi.org/10.1016/j.seta.2022.101971
  30. Moharam, M. M., El Shazly, A. N., Anand, K. V., Rayan, D. E. R. A., Mohammed, M. K. A., Rashad, M. M., & Shalan, A. E. (2021). Semiconductors as Effective Electrodes for Dye Sensitized Solar Cell Applications. Topics in Current Chemistry, 379(3), 1–17. https://doi.org/10.1007/s41061-021-00334-w
  31. Morsada, Z., Hossain, M. M., Islam, M. T., Mobin, M. A., & Saha, S. (2021). Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Applied Materialstoday, 25, 101257. https://doi.org/https://doi.org/10.1016/j.apmt.2021.101257
  32. Nair, G. B., Swart, H. ., & Dhoble, S. . (2020). A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Progress in Materials Science, 109, 100622. https://doi.org/https://doi.org/10.1016/j.pmatsci.2019.100622
  33. Noorasid, N. S., F, A., Mustafa, A. ., Azam, M. ., Mahalingam, S Chelvanathan, P., & Amin, N. (2022). Current advancement of flexible dye sensitized solar cell: A review. Optics, 254, 168089. https://doi.org/https://doi.org/10.1016/j.ijleo.2021.168089
  34. Nouairi, M. E. A., Freha, M., & Bellil, A. (2021). Study by absorption and emission spectrophotometry of the efficiency of the binary mixture (Ethanol-Water) on the extraction of betanin from red beetroot. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 260, 119939. https://doi.org/10.1016/j.saa.2021.119939
  35. Omar, A., Ali, M. S., & Abd Rahim, N. (2020). Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Solar Energy, 207(June 2021), 1088–1121. https://doi.org/10.1016/j.solener.2020.07.028
  36. Önen, T., Karakuş, M. Ö., Coşkun, R., & Çetin, H. (2019). Reaching stability at DSSCs with new type gel electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 385. https://doi.org/10.1016/j.jphotochem.2019.112082
  37. Pakdel, P. M., & Peighambardoust, S. J. (2018). Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydrate Polymers, 201, 264–279. https://doi.org/10.1016/j.carbpol.2018.08.070
  38. Panagopoulos, A. (2021). Water-energy nexus: desalination technologies and renewable energy sources. Environmental Science and Pollution Research, 28(17), 21009–21022. https://doi.org/10.1007/s11356-021-13332-8
  39. Pradhan, S. K., & Chakraborty, B. (2020). Substrate materials and novel designs for bipolar lead-acid batteries: A review. Journal of Energy Storage, 32(April), 101764. https://doi.org/10.1016/j.est.2020.101764
  40. Qi, K., Xing, X., Zada, A., Li, M., Wang, Q., Liu, S. yuan, Lin, H., & Wang, G. (2020). Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceramics International, 46(2), 1494–1502. https://doi.org/10.1016/j.ceramint.2019.09.116
  41. Rajaraman, T. S., Gandhi, V. G., Nguyen, V. H., & Parikh, S. P. (2022). Aluminium foil-assisted NaBH4 reduced TiO2 with surface defects for photocatalytic degradation of toxic fuchsin basic dye. Applied Nanoscience (Switzerland), 13(6), 3925–3944. https://doi.org/10.1007/s13204-022-02628-x
  42. Rekha, M., Kowsalya, M., Ananth, S., Vivek, P., & Jauhar, R. O. M. U. (2019). Current–voltage characteristics of new organic natural dye extracted from Terminalia chebula for dye-sensitized solar cell applications. Journal of Optics, 48(1), 104–112. https://doi: 10.1007/s12596-018-0507-5
  43. Setiarso, P., Harsono, R. V., & Kusumawati, N. (2023). Fabrication of Dye Sensitized Solar Cell (DSSC) Using Combination of Dyes Extracted from Curcuma (Curcuma xanthorrhiza) Rhizome and Binahong (Anredera cordifolia) Leaf with Treatment in pH of the Extraction. Indonesian Journal of Chemistry, 23(4), 924–936. https://doi.org/10.22146/ijc.77860
  44. Sharma, K., Sharma, V., & Sharma, S. S. (2018). Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Research Letters, 13(1). https://doi: 10.1186/s11671-018-2760-6
  45. Selvanathan, V., Yahya, R., Alharbi, H. F., Alharthi, N. H., Alharthi, Y. S., Ruslan, M. H., Amin, N., & Akhtaruzzaman, M. (2020). Organosoluble starch derivative as quasi-solid electrolytes in DSSC: Unravelling the synergy between electrolyte rheology and photovoltaic properties. Solar Energy, 197(August 2019), 144–153. https://doi.org/10.1016/j.solener.2019.12.074
  46. Selvaraj, V., Swarna Karthika, T., Mansiya, C., & Alagar, M. (2021). An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure, 1224. https://doi.org/10.1016/j.molstruc.2020.129195
  47. Sunder Sharma, S., Sharma, K., Singh, R., Srivastava, S., Bihari Rana, K., & Singhal, R. (2021). Natural pigments: Origin and applications in dye sensitized solar cells. Materials Today: Proceedings, 42, 1744–1748. https://doi: 10.1016/j.matpr.2020.10.979
  48. Surana, K., Bhattacharya, B., & Majumder, S. (2021). Extraction of yellow fluorescent Caesalpinia sappan L. dye for photovoltaic application. Optical Materials, 119(March), 111347. https://doi.org/10.1016/j.optmat.2021.111347
  49. Ul Islam, S. A., & Mohd, I. (2019). Structural stability improvement, Williamson Hall analysis and band-gap tailoring through A-site Sr doping in rare earth based double perovskite La2NiMnO6. Rare Metals, 38(9), 805–813. https://doi.org/10.1007/s12598-019-01207-4
  50. Wang, S., Zhao, M., Zhou, M., Li, Y. C., Wang, J., Gao, B., Sato, S., Feng, K., Yin, W., Igalavithana, A. D., Oleszczuk, P., Wang, X., & Ok, Y. S. (2019). Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. Journal of Hazardous Materials, 373, 820–834. https://doi.org/10.1016/j.jhazmat.2019.03.080
  51. Wu, X., Li, C., Shao, L., Meng, J., Zhang, L., & Chen, G. (2021). Is solar power renewable and carbon-neutral: Evidence from a pilot solar tower plant in China under a systems view. Renewable and Sustainable Energy Reviews, 138(December 2020), 110655. https://doi.org/10.1016/j.rser.2020.110655

Last update:

No citation recorded.

Last update: 2024-02-26 10:23:04

No citation recorded.