skip to main content

Methane Concentration on Three Mangrove Zones in Ngurah Rai Forest Park, Bali

1Program Studi Ilmu Kelautan, Universitas Udayana, Indonesia

2Pusat Penelitian Oseanografi, Lembaga Ilmu Pengetahuan Indonesia, Indonesia

Received: 20 May 2021; Revised: 30 Jun 2021; Accepted: 5 Jul 2021; Available online: 10 Jul 2021; Published: 1 Aug 2021.
Editor(s): H Hadiyanto

Citation Format:
Abstract

Mangrove menjadi salah satu ekosistem lahan basah yang berperan penting dalam menyerap karbon. Namun, secara alami ekosistem mangrove juga mampu mengemisikan gas rumah kaca kedalam atmosfer. Metana merupakan salah satu gas rumah kaca yang berdampak signifikan terhadap perubahan iklim. Penelitian tentang siklus metana telah dilakukan di ekosistem mangrove TAHURA Ngurah Rai Bali. Penelitian ini bertujuan untuk mengukur konsentrasi gas metana pada tiga zona ekosistem mangrove. Metode chamber tertutup digunakan dalam pengambilan sampel gas yang kemudian dianalisis dalam gas kromatografi dengan sensor flame ionization detector (FID). Karakter ekologi mangrove yang terdiri dari parameter struktur komunitas mangrove dan lingkungan diukur dari setiap plot kuadrat pengambilan sampel gas. Hasil penelitian menunjukkan konsentrasi gas metana tertinggi ditemukan pada zona darat dengan rata-rata 3,698 ± 0,986 mg. L-1. Walaupun demikian, konsentrasi gas metana pada dua zona lainnya tidak menunjukkan perbedaan yang signifikan dengan zona darat. Variabilitas konsentrasi gas metana tidak berbeda signifikan dengan kondisi struktur komunitas mangrove yang berbeda antar zona. Penelitian ini hanya menemukan variasi nilai potensial redoks (ORP) yang berhubungan signifikan dengan konsentrasi gas metana. Hasil penelitian mengindikasikan bahwa karakter ekologi mangrove yang cukup seragam di kawasan sehingga, tidak menimbulkan perbedaan yang signifikan pada konsentrasi gas metana antar zona. Namun, parameter kondisi substrat lainnya perlu dilibatkan dalam penelitian berikutnya.

Abstract

Mangrove is one of the wetland ecosystems that play an important role in carbon sequestration and storage. However, the ecosystem also emits greenhouse gas into the atmosphere naturally. Methane has been considered as a significant effect on global warming. A preliminary study in a part of the carbon cycle was conducted on the mangrove ecosystem in Ngurah Rai Forest Park Bali. This study was aimed to determine methane gas concentration in three different mangrove zones. Gas samples were collected by closed chamber method and they were analyzed using gas chromatography embedded with the flame ionization detector (FID) sensor. Mangrove ecological parameters i.e. community structure and environmental condition were determined on each quadratic plot where gas samples were collected. The result showed that the highest methane concentration was found in the landward zone at 3,698 ± 0,986 mg. L-1. Even though, the methane concentration of the other zones had not significantly different from the landward zone. In addition, the mangrove community structure among the three zones was not different significantly. The oxidation-reduction potential was the only factor that had a significant correlation with methane concentration. Those results indicated that mangrove ecological conditions among zones were similar to each other,  hence the variation of methane concentration was not significant. Nevertheless, substrate abiotic characters need to be involved in greenhouse gas studies in the future.

Fulltext View|Download
Keywords: Mangrove; Carbon; Methane; Sonneratia alba; Pneumatophore, Sediment

Article Metrics:

  1. Adame, M.E., Lovelock, C.E. 2011. Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia, 663: 23–50
  2. Adilah, D., A.A. Akbar, Jumiati. 2018. Peran Ekosistem Mangrove Bagi Mitigasi Pemanasan Global. Jurnal Teknik Sipil, 18(2): 1-8
  3. Albino, P., Yunasfi, T. Siregar. 2015. Laju Dekomposisi Serasah Daun Rhizhophora mucronata dan Kontribusinya Terhadap Nutrisi di Perairan Pantai Serambi Deli Kecamatan Pantai Labu. Jurnal Aquacoastmarine, 3(5): 1-11
  4. Alongi DM. 2014. Carbon Cycling and Storage in Mangrove Forest. Annual Review of Marine Science. 6:195–219
  5. Andrew, G. 2018. International Carbon Conference: The Methane Time Bomb. Energy Procedia, 146: 23-29
  6. Arias-Ortiz, A., P. Masqué, Leah, G., Lisa, B., H. Kennedy, C.M. Duarte, Jordi, G.O., Claudia, R.B.N., Marc, S.H., I. Ratefinjanahary, Jaona, R., Catherine, E.L. 2021. Losses of Soil Organic Carbon with Deforestation in Mangroves of Madagascar. Ecosystems, 24: 1–19
  7. Arizuna, M., D. Suprapto, M.R. Muskananfola. 2014. Kandungan Nitrat dan Fosfat dalam Air Pori Sedimen di Sungai dan Muara Sungai Wedung Demak. Diponegoro Journal of Management of Aquatic Resources, 3(1): 7-16
  8. Ashton, E.C., Macintosh, D.J. 2002. Preliminary assessment of the plant diversity and community ecology of the Sematan mangrove forest, Sarawak, Malaysia. Forest Ecology and Management, 166: 111-129
  9. Aulakh, M.S., R. Wassmann., H. Rennenberg. 2001. Methane emissions from rice fields -quantification, mechanisms, role of management, and mitigation options, Advances In Agronomy, 70(C): 193–260
  10. Basyuni, M., M. Wasilah, P.A.J. Hasibuan, N. Sulistiyono, Sumardi, Y. Bimantara, Rahmah, H., H. Sagami, H. Oku. 2019. Salinity and subsequent freshwater influences on the growth, biomass, and polyisoprenoids distribution of Rhizophora apiculata seedlings. Biodiversitas Journal of Biological Diversity, 20(1): 288-295
  11. Burkholz, C., N. Garcias-Bonet, C.M. Duarte. 2020. Warming enhances carbon dioxide and methane fluxes from Red Sea Seagrass (Halophila stipulacea) sediments. Biogeosciences, 17: 1711-1730
  12. Chauhan, R., Datta, A., Ramanathan, A.L., Adhya, T.K. 2015. Factors influencing spatio-temporal variation of methane and nitrous oxide emission from a tropical mangrove of eastern coast of India. Atmospheric Environment, 107: 95–106
  13. Chen, G.C., Tam, N.F.Y., Ye, Y. 2010. Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China. Science of the Total Environment, 408: 2761–2767
  14. Chen, GC., Y.I. Ulumuddin., S. Pramudji., S.Y. Chen., B. Chen., Y. Ye., D.Y. Ou., Z.Y. Ma., H. Huang., J.K. Wang. 2014. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia. Science of the Total Environment, 487: 91-96
  15. Cui, M., A. Ma., H. Qi., X. Zhuang., G. Zhuang. 2014. Anaerobic oxidation of methane: an “active” microbial process. MicrobiologyOpen, 4(10): 1-11
  16. Datta, A., J.B. Yeluripati., D.R. Nayak., K.R. Mahata., S.C. Santra., T.K. Adhya. 2013. Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures, Atmospheric Environment, 66: 114–122
  17. Dharmawan, I.W.E. 2016. Variasi Spasial Emisi Gas Rumah Kaca (GRK) Pada Ekosistem Mangrove di Pulau Kelong, Bintan. Tesis, Institut Pertanian Bogor. 19 hlm
  18. Dharmawan, I.W.E. 2020. Hemispherical Photography: Analisis Tutupan Kanopi Komunitas Mangrove. Nas Media Pustaka, Makassar. 51 hlm
  19. Dharmawan, I.W.E., dan Pramudji. 2020. Mangrove community structure in Papuan Small Islands, Case Study in Biak Regency. Proceeding The IOP Conference Series: Earth and Environmental Science, Purwokerto, Indonesia, 21 - 23 August 2019. 8 hlm
  20. Dharmawan, I.W.E., Suyarso, Ulumuddin Y.I., Prayudha B., Pramudji. 2020. Panduan Monitoring Struktur Komunitas Mangrove di Indonesia. COREMAP CTI, Lembaga Ilmu Pengetahuan Indonesia, Jakarta. 94 hlm
  21. Dharmawan, I.W.E., T.A. Hadi, Ucu, Y.A., Petrus, C.M., S. Rahmawati. 2020. Monitoring Kesehatan Terumbu Karang dan Ekosistem Terkait di Kabupaten Biak-Numfor Tahun 2020. Pusat Penelitian Oceanografi, Kedeputian Bidang Ilmu Pengetahuan Kebumian, LIPI. 207 hlm
  22. Flowers, T.J., dan Colmer, T.D. 2015. Plant salt tolerance: adaptations in halophytes. Annuals of Botany. 115 (3): 327–331
  23. Garcias-Bonet, N., dan C.M. Duarte. 2017. Methane Production by Seagrass Ecosystems in the Red Sea. Frontiers in Marine Science, 4(340): 1-10
  24. Hall, S.J., W.H. McDowell., Whendee, L.S. When Wet Gets Wetter: Decoupling of Moisture, Redox Biogeochemistry, and Greenhouse Gas Fluxes in a Humid Tropical Forest Soil. Ecosystems, 16: 576-589
  25. Hermawan. AR., Pribadi R., Ario R. 2014. Struktur dan Komposisi Vegetasi Mangrove Alami di Kawasan Ekowisata Taman Hutan Raya Ngurah Rai, Bali. Journal of Marine Research, 3(4): 405-414
  26. Hidayatullah, M., E. Pujiono. 2014. Struktur dan Komposisi Jenis Hutan Mangrove di Golo Sepang Kecamatan Boleng Kabupaten Manggarai Barat. Jurnal Penelitian Kehutanan Wallacea, 3(2): 151-162
  27. Huang, X., X. Wang., X. Li., K. Xin., Z. Yan., Y. Sun., Richard, B. 2018. Distribution Pattern and Influencing Factors for Soil Organic Carbon (SOC) in Mangrove Communities at Dongzhaigang, China. Journal of Coastal Research, 34(2): 434-442
  28. Irwansah, Sugiyarto, Edwi, M. 2019. Struktur Komunitas Ekosistem Mangrove di Teluk Serewe Pulau Lombok Nusa Tenggara Barat. Bioeksperimen, 5(2): 126-130
  29. Jørgensen, J.C., Jacob, M., Karsten, F., J.R. Christiansen. 2019. Continuous methane concentration measurements at the Greenland Ice Sheet-atmosphere interface using a low-cost low-power metal oxide sensor system. Atmospheric Measurement Techniques, 13: 3319-3328
  30. Koebsch, F., S. Glatzel., G. Jurasinski. 2013. Vegetation controls methane emissions in a coastal brackish fen, Wetlands Ecology and Management, 21(5): 323–337
  31. Lekphet, S., S. Nitisoravut., S. Adsavakulchai. 2005. Estimating methane emissions from mangrove area in Ranong Province, Thailand. Songklanakarin Journal Science Technology, 27(1) : 153-163
  32. Lin, C.W., Yu-Chen, K., Meng-Chou, C., Hsin-Hsun, W., Chuan-Wen, H., Hsing-Juh, L. 2020. Methane Emissions from Subtropical and Tropical Mangrove Ecosystems in Taiwan. Forests, 11(470): 1-16
  33. Lofton, D.D., S.C. Whalen, A.E. Hershey. 2014. Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes, Hydrobiologia, 721(1): 209–222
  34. Lugina, M., I. Alviya, Indartik, Mirna, A.P. 2017. Strategi Keberlanjutan Pengelolaan Hutan Mangrove di TAHURA Ngurah Rai Bali. Jurnal Analisis Kebijakan Kehutanan, 14(1): 61-77
  35. Lugo, A., dan S. Snedaker. 1974. The Ecology of Mangroves. Annual Review of Ecology, Evolution and Systematics, 5 : 39-64
  36. Mahasani, I.G.A.I., Hendrawan, I.G., Karang, I.W.G.A. 2016. Karbon Organik di Bawah Permukaan Tanah pada Kawasan Rehabilitasi Hutan Mangrove, Taman Hutan Raya Ngurah Rai, Bali. Prosiding Seminar Nasional Kelautan, Universitas Trunojoyo Madura, 27 Juli 2016. 33-42 hlm
  37. Mangrove Information Centre. 2004. Pengertian Dasar Mangrove (Bakau). The Development of Sustainable Mangrove Management Project. Bali: Ministry of Forestry and Estate Crops and JICA
  38. Marín-Muñiz, J.L., Hernández, M.E., Moreno-Casasola, P. 2015. Greenhouse gas emissions from coastal freshwater wetlands in Veracruz Mexico: effect of plant community and seasonal dynamics. Atmospheric Environment, 107(26): 107–117
  39. Marinho, C.C., Campos, E.A., Guimaraes, J.R.D., Esteves, F.A. 2012. Effect of Sediment Composition on Methane Concentration and Production in the Transition Zone of a Mangrove Sepetiba Bay, Rio de Janeiro, Brazil. Brazilian Journal of Biology, 72(3): 429-436
  40. Masson, N., Piedrahita, R. Hannigan, M. 2015. Approach for quantification of metal oxide type semiconductor gas sensors used for ambient air quality monitoring. Sensors Actuators B Chem, 208: 339–345
  41. Matatula, J., Enry, P., S. Pudyatmoko., R. Sadono. 2019. Keragaman Kondisi Salinitas Pada Lingkungan Tempat Tumbuh Mangrove di Teluk Kupang, NTT. Jurnal Ilmu Lingkungan, 17(3): 425-434
  42. Matthias, K. 2015. Introduction to Statistical Analysis with R. Bookboon.com, 228 hlm
  43. Megonigal, J.P., M.E. Hines., P.T. Visscher. 2013. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. Treatise on Geochemistry: Second Edition, 10: 273-359
  44. Mustafa, A., Rachmansyah., Kamariah. 2011. Karakteristik Tanah di Bawah Tegakan Jenis Vegetasi Mangrove dan Kedalaman Tanah Berbeda Sebagai Indikator Biologis untuk Tanah Tambak di Kabupaten Mamuju Provinsi Sulawesi Barat. Jurnal Riset Akuakultur, 6(1): 139-156
  45. Myhre, G., D. Shindell., F.-M. Bréon., W. Collins., J. Fuglestvedt., J. Huang., D. Koch., J.-F. Lamarque., D. Lee., B. Mendoza., T. Nakajima., A. Robock., G. Stephens., T. Takemura., H. Zhang. 2013: Anthropogenic and Natural Radiative Forc-ing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 203 hlm
  46. Noor, Y.R., Khazali, M., Suryadiputra, I.N.N. 2006. Panduan Pengenalan Mangrove di Indonesia. Bogor: Wetlands International. 110 hlm
  47. Nurdiansah, D., dan Dharmawan, I.W.E. 2021. Struktur Komunitas dan Kondisi Kesehatan Mangrove di Pulau Middleburg-Miossu, Papua Barat. Jurnal Ilmu dan Teknologi Kelautan Tropis, 13(1): 81-96
  48. Padhy, S.R., P. Bhattacharyya, P.K. Dash, C.S. Reddy, A. Chakraborty, H. Pathak. 2020. Seasonal fluctuation in three mode of greenhouse gases emission in relation to soil labile carbon pools in degraded mangrove Sundarban, India. Science of The Total Environment, 705:135909
  49. Patrice, P.N.I.K., Kawilarang, W.A.M., M. Iwata, Fransisco, P.T.P., Ixchel, F.M. 2012. Profil Salinitas dan Suhu di Teluk Manado pada Hari-Hari Hujan dan Tidak Hujan. Jurnal Perikanan dan Kelautan Tropis, 8(3): 90-93
  50. Parmadi, E.H.J.C., I. Dewiyanti, Sofyatuddin, K. 2016. Indeks Nilai Penting Vegetasi Mangrove di Kawasan Kuala Idi, Kabupaten Aceh Timur. Jurnal Ilmiah Mahasiswa Kelautan dan Perikanan Unsyiah, 1(1): 82-95
  51. Pepper, I.L., dan M.L. Brusseau. 2019. Physical-Chemical Characteristics of Soils and the Subsurface. Environmental and Pollution Science, 9-22
  52. Pillai, N.G., dan Harilal, C.C. 2016. Surveillance of the Tolerance Limit of Sonnearia alba Sm. to certain Hydrogeochemical Parameters from Heterogenous Natural Habitats of Kerala, South India. International Research Journal of Biological Science, 5(12): 28-37
  53. Poedjirahajoe, E., D. Marsono, Frita, K.W. Penggunaan Principal Component Analysis dalam Distribusi Spasial Vegetasi Mangrove di Pantai Utara Pemalang. Jurnal Ilmu Kehutanan, 11: 29-42
  54. Prayitno, B. 2016. Methane Formation in Mangrove Sediment. Oseana, 41(3): 44-53
  55. Prinasti, N.K.D., Dharma, I.G.B.S., Suteja, Y. 2020. Struktur Komunitas Vegetasi Mangrove Berdasarkan Karakteristik Substrat di Taman Hutan Raya Ngurah Rai, Bali. Journal of Marine and Aquatic Science, 6(1): 90-99
  56. Purvaja, R., R. Ramesh., P. Frenzel. 2004. Plant-mediated methane emission from an Indian mangrove, Global Change Biology, 10(11): 1825–1834
  57. Reay, D.S., Smith, P., Christensen, T.R., James, R.H., Clark, H. 2018. Methane and Global Environmental Change. Annual Review of Environment and Resources, 43: 8.1–8.28
  58. Rudianto, R., D.G. Bengen., F. Kurniawan. 2020. Causes and Effects of Mangrove EcosystemDamage on Carbon Stocks and Absorption inEast Java, Indonesia. Sustainability, 12: 1-17
  59. Sasauw, J., Janny, D.K., Joshian, N.W.S. 2016. Struktur Komunitias Mangrove di Kelurahan Tongkaina Manado. Jurnal Pesisir dan Laut Tropis, 2(1): 17-22
  60. Sohn, J. H., Atzeni, M., Zeller, L. Pioggia, G. 2008. Characterisation of humidity dependence of a metal oxide semiconductor sensor array using partial least squares. Sensors Actuators B Chem, 131(1): 230–235
  61. Surinati, D., dan C. Corvianawatie. Dinamika Massa Air di Sekitar Pulau-Pulau Kecil Terluar (PPKT) Perairan Utara Papua. Oseanologi dan Limnologi di Indonesia, 4(3): 187-203
  62. Susiana. 2015. Analisis Kualitas Air Ekosistem Mangrove di Estuari Perancak, Bali. Jurnal Ilmiah agribisnis dan Perikanan, 8(1): 42-49
  63. Ulumuddin, Y.I. 2018. Metana: Emisi Gas Rumah Kaca dari Ekosistem Karbon Biru, Mangrove. Jurnal Ilmu Lingkungan, 17(2): 359-372
  64. Von-Arx, G., Elisabeth, G.P., Anne, T., M. Rebetez. 2013. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. Journal of Ecology, 101: 1201-1213
  65. Yusuf, H., dan F.F. Muhsoni. Struktur Komunitas, Tutupan dan Kualitas Air Mangrove di Kawasan Pesisir Kecamatan Kwanyar Kabupaten Bangkalan. Juvenil, 1(3): 359-370
  66. Zhai, J., J. Zou., Q. He., K. Ning., H. Xiao. 2012. Variation of dissolved oxygen and redox potential and their correlation with microbial population along a novel horizontal subsurface flow wetland. Environmental Technology, 33(17): 1999-2006
  67. Zhang, Y., F.P. Liang, Y.Y.W., Li, J.W., Zhang, S.J., Zhang, H., Bai, Q., Liu, C.Y.R., C.R. Zhong, L. Li. 2018. Allelopathic effects of leachates from two alien mangrove species, Sonneratia apetala and Laguncularia racemosa on seed germination, seedling growth and antioxidative activity of a native mangrove species Sonneratia caseolaris. Allelopathy J., 44(1): 119-130
  68. Zheng, X., Guo, J., Song, W., Feng, J., Lin, G. 2018. Methane Emission from Mangrove Wetland Soils Is Marginal but Can Be Stimulated Significantly by Anthropogenic Activities. Forests, 9(12): 738

Last update:

  1. Soil greenhouse gas fluxes to the atmosphere during the wet season across mangrove zones in Benoa Bay, Indonesia

    I Putu Sugiana, Elok Faiqoh, Maria Fernanda Adame, Gede Surya Indrawan, Anak Agung Eka Andiani, I Gusti Ayu Istri Pradnyandari Dewi, I Wayan Eka Dharmawan. Asian Journal of Atmospheric Environment, 17 (1), 2023. doi: 10.1007/s44273-023-00014-9

Last update: 2024-12-23 19:51:18

No citation recorded.