skip to main content

Tumbuhan Air Invasif Berpotensi sebagai Fitoremediator Bahan Organik Total (BOT) di Waduk Darma Kuningan

1Prodi Ilmu Lingkungan, Fakultas Kehutanan dan Lingkungan, Universitas Kuningan, Indonesia

2Prodi Kehutanan, Fakultas Kehutanan dan Lingkungan, Universitas Kuningan, Indonesia

Received: 1 Feb 2023; Revised: 8 Aug 2023; Accepted: 24 Sep 2023; Available online: 19 Nov 2023; Published: 10 Dec 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract

ABSTRAK

Tumbuhan air merupakan bagian penting dari ekosistem perairan yang terbentuk dari adapatasi morfologi dan fisiologi sehingga tercipta pola hidup yang muncul di permukaan air, terendam dan mengapung bebas. Selain berfungsi secara ekologis organisme ini mampu menjadi fitoremediator untuk menjaga kualitas perairan. Tujuan khusus dari penelitian ini adalah untuk menginventarisasi tumbuhan air yang berpotensi sebagai fitoremediator di Waduk Darma Kuningan. Hasil penelitian ini dapat dipergunakan untuk pengelolaan waduk yang berkelanjutan, sehingga pemanfaatan waduk dapat sesuai dengan fungsinya. Penelitian ini juga terkait dengan komitmen United Nations Environment Programme (UNEP) terhadap keberlanjutan lingkungan hidup secara komprehensif. Tumbuhan air yang dimanfaatakan sebagai fitoremediator harus memiliki tingkat pertumbuhan yang tinggi, investasi bniomassa yang besar dan mampu beradaftasi dengan kondisi lingkungan yang esktrim. Eceng gondok (Eichhornia crasspes) merupakan tumbuhan air yang paling tepat dipergunakan sebagai fitoremediator di perairan Waduk Darma.

Kata kunci: tumbuhan air, invasif,  fitoremedias, waduk

Fulltext View|Download
Keywords: tumbuhan air; invasif; fitoremedias; waduk

Article Metrics:

  1. DAFTAR PUSTAKA
  2. Ajithram, A., Jappes, J. T. W., & Brintha, N. C. (2021). Water hyacinth (Eichhornia crassipes) natural composite extraction methods and properties - A review. Materials Today: Proceedings, 45(xxxx), 1626–1632. https://doi.org/10.1016/j.matpr.2020.08.472
  3. Al-Mansoory, A. F., Idris, M., Abdullah, S. R. S., & Anuar, N. (2017). Phytoremediation of contaminated soils containing gasoline using Ludwigia octovalvis (Jacq.) in greenhouse pots. Environmental Science and Pollution Research, 24(13), 11998–12008. https://doi.org/10.1007/s11356-015-5261-5
  4. Amalina, F., Razak, A. S. A., Krishnan, S., Zularisam, A. W., & Nasrullah, M. (2022). Water hyacinth (Eichhornia crassipes) for organic contaminants removal in water – A review. Journal of Hazardous Materials Advances, 7(April), 100092. https://doi.org/10.1016/j.hazadv.2022.100092
  5. Amin, R., Mafikalita Sari, R. A., & Rahyuni, D. (2021). The Potency of Ludwigia adscendens and L. octovalvis as Phytoremediator Macrophytes in Indonesia. Asian Journal of Fisheries and Aquatic Research, 15(6), 78–86. https://doi.org/10.9734/ajfar/2021/v15i630352
  6. Ansari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egyptian Journal of Aquatic Research, 46(4), 371–376. https://doi.org/10.1016/j.ejar.2020.03.002
  7. Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 171, 621–645. https://doi.org/10.1016/j.earscirev.2017.06.005
  8. Astuti, L. P., & Indriatmoko, I. (2018). Kemampuan Beberapa Tumbuhan Air dalam Menurunkan Pencemaran Bahan Organik dan Fosfat untuk Memperbaiki Kualitas Air. Jurnal Teknologi Lingkungan, 19(2), 183. https://doi.org/10.29122/jtl.v19i2.2063
  9. Astuti, L. P., Sugianti, Y., Warsa, A., & Sentos, A. A. (2022). Water Quality and Eutrophication in Jatiluhur Reservoir, West Java, Indonesia. Polish Journal of Environmental Studies, 31(2), 1493–1503. https://doi.org/10.15244/pjoes/142475
  10. Barko, J. W., Adams, M. S., & Clesceri, N. L. (1986). Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. In Journal of Aquatic Plant Management (Vol. 24, pp. 1–10)
  11. Bekoe, J., Balana, B. B., & Nimoh, F. (2021). Social cost-benefit analysis of investment in rehabilitation of multipurpose small reservoirs in northern Ghana using an ecosystem services-based approach. Ecosystem Services, 50(August 2020), 101329. https://doi.org/10.1016/j.ecoser.2021.101329
  12. Bhagowati, B., & Ahamad, K. U. (2019). A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrology and Hydrobiology, 19(1), 155–166. https://doi.org/10.1016/j.ecohyd.2018.03.002
  13. Bianchini, I., Cunha-Santino, M. B., Milan, J. A. M., Rodrigues, C. J., & Dias, J. H. P. (2015). Model parameterization for the growth of three submerged aquatic macrophytes. Journal of Aquatic Plant Management, 53(January), 64–73
  14. Canazart, D. A., Nunes, A. R. da C., Sanches, M., & Conte, H. (2017). PHYTOREMEDIATION AGRO INDUSTRIAL WASTEWATER OF USING MACROPHYTE Eichhornia crassipes. Brazilian Journal of Surgery and Clinical Research - BJSCR, 17(2), 87–91
  15. Dauda, A. B., Ajadi, A., Tola-Fabunmi, A. S., & Akinwole, A. O. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries, 4(3), 81–88. https://doi.org/10.1016/j.aaf.2018.10.002
  16. Feng, S., Xu, S., Zhang, X., Wang, R., Ma, X., Zhao, Z., Zhuang, G., Bai, Z., & Zhuang, X. (2018). Myriophyllum aquaticum-based surface flow constructed wetlands for enhanced eutrophic nutrient removal-a case study from laboratory-scale up to pilot-scale constructed wetland. Water (Switzerland), 10(10), 1–18. https://doi.org/10.3390/w10101391
  17. Haroon, A. M., & Abd Ellah, R. G. (2021). Variability response of aquatic macrophytes in inland lakes: A case study of Lake Nasser. Egyptian Journal of Aquatic Research, 47(3), 245–252. https://doi.org/10.1016/j.ejar.2021.07.004
  18. Hasibuan, A. A., Yuniati, R., & Wardhana, W. (2020). The growth rate and chlorophyll content of water hyacinth under different type of water sources. IOP Conference Series: Materials Science and Engineering, 902(1). https://doi.org/10.1088/1757-899X/902/1/012064
  19. Heriyanto, H., Hasan, Z., Yustiati, A., & Nurruhwati, I. (2018). Dampak Budidaya Keramba Jaring Apung terhadap Produktivitas Primer di Perairan Waduk Darma Kabupaten Kuningan Jawa Barat. Jurnal Perikanan Dan Kelautan, 9(2), 27–33
  20. Hermawaty, A. I. (2015). Permasalahan Kelembagaan Pemanfaatan Waduk Darma untuk Kegiatan Budidaya Keramba Jaring Apung di Kabupaten Kuningan Jawa Barat. Jurnal Wilayah Dan Lingkungan, 3(2), 95. https://doi.org/10.14710/jwl.3.2.95-104
  21. Hindayani, P., Pratama, A. R., & Anna, Z. (2021). Strategi Prospektif Pengembangan Dalam Ekowisata Waduk Cirata Yang Berkelanjutan. 19(3), 620–629. https://doi.org/10.14710/jil.19.3.620-629
  22. Imron, I., Dermiyati, D., Sriyani, N., Yuwono, S. B., & Suroso, E. (2019). Perbaikan Kualitas Air Limbah Domestik Dengan Fitoremediasi Menggunakan Kombinasi Beberapa Gulma Air: Studi Kasus Kolam Retensi Talang Aman Kota Palembang. Jurnal Ilmu Lingkungan, 17(1), 51. https://doi.org/10.14710/jil.17.1.51-60
  23. Irhamni, I., Pandia, S., Purba, E., & Hasan, W. (2017). Kajian akumulator beberapa tumbuhan air dalam menyerap logam berat secara fitoremediasi. Jurnal Serambi Engineering, 1(2), 75–84
  24. Izzati, M., Soeprobowati, T. R., & Prasetyo, S. (2022). Characterization of Three Selected Macrophytes - An Ecological Engineering Approach for Effective Rehabilitation of Rawapening Lake. Journal of Ecological Engineering, 23(9), 277–287. https://doi.org/10.12911/22998993/152047
  25. Kurniawan, A., Khasanah, K., & Jayatri, F. N. M. (2022). Study on the Application of Phytoremediation of Phosphate Content to Eutrophication in Cengklik Reservoir, Boyolali Regency. IOP Conference Series: Earth and Environmental Science, 986(1). https://doi.org/10.1088/1755-1315/986/1/012075
  26. Larasati, E., & Purnaweni, H. (2022). Rawapening Lake Buffer Zone Management. 24(2), 99–106
  27. Lesiv, M. S., Polishchuk, A. I., & Antonyak, H. L. (2020). Aquatic macrophytes: ecological features and functions. Studia Biologica, 14(2), 79–94. https://doi.org/10.30970/sbi.1402.619
  28. Li, Y., Guo, S., Guo, J., Wang, Y., Li, T., & Chen, J. (2014). Deriving the optimal refill rule for multi-purpose reservoir considering floodcontrol risk. Journal of Hydro-Environment Research, 8(3), 248–259. https://doi.org/10.1016/j.jher.2013.09.005
  29. Lu, B., Xu, Z., Li, J., & Chai, X. (2018). Removal of water nutrients by different aquatic plant species: An alternative way to remediate polluted rural rivers. Ecological Engineering, 110(April 2017), 18–26. https://doi.org/10.1016/j.ecoleng.2017.09.016
  30. Lukito, H. (2021). Penelitian …. 3, 46–59
  31. Made, I. G., Arthana, I. W., & Wulandari, E. (2020). Kerapatan dan Persebaran Tumbuhan Air di Danau Buyan Kabupaten Buleleng , Provinsi Bali. 6, 67–77
  32. Mauludin, R. (n.d.). Pengaruh Atraksi Wisdata terhadap Minat Berkunjung Wisatawan. Jurnal Manajemen Resort Dan Leisure, 57–68
  33. Md Sa’at, S. K., & Qamaruz Zamana, N. (2017). Phytoremediation Potential of Palm Oil Mill Effluent by Constructed Wetland Treatment. Engineering Heritage Journal, 1(1), 49–50. https://doi.org/10.26480/gwk.01.2017.49.54
  34. Mlunguza, N. Y., Ncube, S., Mahlambi, P. N., Chimuka, L., & Madikizela, L. M. (2020). Determination of selected antiretroviral drugs in wastewater, surface water and aquatic plants using hollow fibre liquid phase microextraction and liquid chromatography - tandem mass spectrometry. Journal of Hazardous Materials, 382(March 2019), 121067. https://doi.org/10.1016/j.jhazmat.2019.121067
  35. Mohebi, Z. (2022). Phytoremediation of wastewater using aquatic plants , A review J ournal of A pplied R esearch in W ater and W astewater Phytoremediation of wastewater using aquatic plants , A review. April
  36. Mooney, R. J., Stanley, E. H., Rosenthal, W. C., Esselman, P. C., Kendall, A. D., & McIntyre, P. B. (2020). Outsized nutrient contributions from small tributaries to a Great Lake. Proceedings of the National Academy of Sciences of the United States of America, 117(45), 28175–28182. https://doi.org/10.1073/pnas.2001376117
  37. Mora-Ravelo, S. G., Alarcón, A., Rocandio-Rodríguez, M., & Vanoye-Eligio, V. (2017). Bioremediation of wastewater for reutilization in agricultural systems: A review. Applied Ecology and Environmental Research, 15(1), 33–50. https://doi.org/10.15666/aeer/1501_033050
  38. Nizam, N. U. M., Hanafiah, M. M., Noor, I. M., & Karim, H. I. A. (2020). Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Applied Sciences (Switzerland), 10(8). https://doi.org/10.3390/APP10082712
  39. Patel, D. K., & Kanungo, V. K. (2012). Treatment of domestic wastewater by potential application of a submerged aquatic plant Hydrilla verticillata Casp. Recent Research in Scinece and Technology, 4(10), 56–61
  40. Piranti, A. S., Rahayu, D. R. U. S., & Waluyo, G. (2018). Nutrient Limiting Factor for Enabling Algae Growth of Rawapening Lake, Indonesia. Biosaintifika: Journal of Biology & Biology Education, 10(1), 101–108. https://doi.org/10.15294/biosaintifika.v10i1.12500
  41. Pratama, D. S., Syaukat, Y., & Ekayani, M. (2018). Estimasi Nilai Ekonomi Dan Eksternalitas Negatif Pemanfaatan Waduk Darma. RISALAH KEBIJAKAN PERTANIAN DAN LINGKUNGAN: Rumusan Kajian Strategis Bidang Pertanian Dan Lingkungan, 4(1), 13. https://doi.org/10.20957/jkebijakan.v4i1.20056
  42. Prayuda, L. R., Arthana, I. W., & Dewi, A. P. W. K. (2017). Pengaruh Nitrat (NO3) Terhadap Pertumbuhan Alami Eceng Gondok (Eichornia crassipes Solms.) Berdasarkan Biomassa Basah Di Danau Batur, Kintamani, Bali. Journal of Marine and Aquatic Sciences, 3(2), 215. https://doi.org/10.24843/jmas.2017.v3.i02.215-222
  43. Pusparinda, L., & Santoso, I. B. (2016). Studi Literatur Perencanaan Floating Treatment Wetland di Indonesia. Jurnal Teknik ITS, 5(2). https://doi.org/10.12962/j23373539.v5i2.17707
  44. Raimi, O. M., Ilesanmi, A., Alima, O., & Omini, D. E. (2021). Exploring How Human Activities Disturb the Balance of Biogeochemical Cycles: Evidence from the Carbon, Nitrogen and Hydrologic Cycles. Research on World Agricultural Economy, 2(3), 23–44. https://doi.org/10.36956/rwae.v2i3.426
  45. Rijal, M., Amin, M., Rohman, F., Suarsini, E., & Alim Natsir, N. (2016). Pistia stratiotes and Limnocharis Flava as Phytoremediation Heavy Metals Lead and Cadmium in the Arbes Ambon. International Journal of Sciences: Basic and Applied Research (IJSBAR) International Journal of Sciences: Basic and Applied Research, 27(2), 182–188. http://gssrr.org/index.php?journal=JournalOfBasicAndApplied
  46. Ripley, B. S., Muller, E., Behenna, M., Whittington-Jones, G. M., & Hill, M. P. (2006). Biomass and photosynthetic productivity of water hyacinth (Eichhornia crassipes) as affected by nutrient supply and mirid (Eccritotarus catarinensis) biocontrol. Biological Control, 39(3), 392–400. https://doi.org/10.1016/j.biocontrol.2006.05.002
  47. Saha, P., Banerjee, A., & Sarkar, S. (2015). Phytoremediation Potential of Duckweed (Lemna minor L.) On Steel Wastewater. International Journal of Phytoremediation, 17(6), 589–596. https://doi.org/10.1080/15226514.2014.950410
  48. Salawu, M. O., Sunday, E. T., & Oloyede, H. O. B. (2018). Bioaccumulative activity of Ludwigia peploides on heavy metals-contaminated water. Environmental Technology and Innovation, 10, 324–334. https://doi.org/10.1016/j.eti.2018.04.001
  49. Sanmuga Priya, E., & Senthamil Selvan, P. (2017). Water hyacinth (Eichhornia crassipes) – An efficient and economic adsorbent for textile effluent treatment – A review. Arabian Journal of Chemistry, 10, S3548–S3558. https://doi.org/10.1016/j.arabjc.2014.03.002
  50. Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 4322–4333. https://doi.org/10.1098/rspb.2012.1032
  51. Science, E. (2022). Pollution of ecosystem water resources in the Ural Federal District Pollution of ecosystem water resources in the Ural Federal District. https://doi.org/10.1088/1755-1315/1045/1/012125
  52. Shokry, H., Elkady, M., & Salama, E. (2020). Eco-friendly magnetic activated carbon nano-hybrid for facile oil spills separation. Scientific Reports, 10(1), 1–17. https://doi.org/10.1038/s41598-020-67231-y
  53. Suryandari, A., & Sugianti, Y. (2017). Tumbuhan Air Di Danau Limboto, Gorontalo: Manfaat Dan Permasalahannya. BAWAL Widya Riset Perikanan Tangkap, 2(4), 151. https://doi.org/10.15578/bawal.2.4.2009.151-154
  54. Syranidou, E., Christofilopoulos, S., & Kalogerakis, N. (2017). Juncus spp.—The helophyte for all (phyto)remediation purposes? New Biotechnology, 38(16), 43–55. https://doi.org/10.1016/j.nbt.2016.12.005
  55. Tamam, M. B., Ramadani, A. H., Mihatul Maflahah Halma, E., & Tri Uliana Sari, C. (2021). Inventarisasi Tumbuhan Akuatik Berpotensi Fitoremediator Air Limbah Industri di Waduk Bunder Gresik. Biotropic : The Journal of Tropical Biology, 5(2), 68–73. https://doi.org/10.29080/biotropic.2021.5.2.68-73
  56. Tjahyo, D. W. H., Kartamihardja, E. S., & Purnamaningtyas, S. E. (2017). KUALITAS AIR, PROOUKTIVITAS PRIMER, DAN POTENST PRODUKST IKAN WADUK DARfuIA UNTUK MENDUKUNG KEHIDUPAN DAN PERTUMBUHAN UDANG GALAH (Macrobrachium rosenbergii) YANG DI lNTRODUKSTKAN. Jurnal Penelitian Perikanan Indonesia, 12(1), 1. https://doi.org/10.15578/jppi.12.1.2006.1-12
  57. Umari, I., Widarti, W., Wijaya, I., & Hasbi, H. (2018). PENGARUH WARNA NAUNGAN PLASTIK DAN DOSIS PUPUK ORGANIK KOMPOS TERHADAP PERTUMBUHAN BAWANG MERAH (Allium ascalonicum L.). Jurnal Agroqua: Media Informasi Agronomi Dan Budidaya Perairan, 16(2), 129. https://doi.org/10.32663/ja.v16i2.458
  58. Wang, H., Zhang, X., Peng, Y., Wang, H., Wang, X., Song, J., & Fei, G. (2022). Restoration of aquatic macrophytes with the seed bank is difficult in lakes with reservoir-like water-level fluctuations: A case study of Chaohu Lake in China. Science of the Total Environment, 813(November), 151860. https://doi.org/10.1016/j.scitotenv.2021.151860
  59. Wang, Z., Zhang, Z., Zhang, Y., Zhang, J., Yan, S., & Guo, J. (2013). Nitrogen removal from Lake Caohai, a typical ultra-eutrophic lake in China with large scale confined growth of Eichhornia crassipes. Chemosphere, 92(2), 177–183. https://doi.org/10.1016/j.chemosphere.2013.03.014
  60. Wani, R. A., Ganai, B. A., Shah, M. A., & Uqab, B. (2017). Heavy Metal Uptake Potential of Aquatic Plants through Phytoremediation Technique - A Review. Journal of Bioremediation & Biodegradation, 08(04). https://doi.org/10.4172/2155-6199.1000404
  61. Yu, S., Miao, C., Song, H., Huang, Y., Chen, W., & He, X. (2019). Efficiency of nitrogen and phosphorus removal by six macrophytes from eutrophic water. International Journal of Phytoremediation, 21(7), 643–651. https://doi.org/10.1080/15226514.2018.1556582

Last update:

No citation recorded.

Last update: 2024-11-02 19:25:32

No citation recorded.