skip to main content

Modifikasi Fe3O4 dari Pasir Besi Pantai dengan Asam Oleat dan PEG melalui Metode co-Precipitation untuk Menangani Limbah Mikroplastik PET di Air Laut

1Chemical Engineering, Universitas Jember, Jl. Kalimantan Tegalboto No.37, Krajan Timur, Sumbersari, Kec. Sumbersari, Kabupaten Jember, Jawa Timur 68121, Indonesia

2Departemen Teknik Kimia Institut Teknologi Sepuluh Nopember, Jl. Teknik Kimia, Keputih, Kec. Sukolilo, Surabaya, Jawa Timur 60111, Indonesia

3Program Studi Teknik Kimia, Fakultas Teknik, Universitas Jember, Jember, Indonesia, Indonesia

Received: 31 May 2024; Revised: 21 Aug 2024; Accepted: 9 Jan 2025; Available online: 15 Mar 2025; Published: 31 Mar 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Mikroplastik diartikan sebagai plastik yang berukuran kurang dari 5 mm. Mikroplastik telah terdeteksi secara luas di lingkungan perairan dan menjadi kontaminan yang sangat mengkhawatirkan. Oleh karena itu sangat diperlukan cara untuk menghilangkan mikroplastik dari air secara efektif. Tujuan dari penelitian ini yaitu untuk mengetahui pengaruh penambahan surfaktan asam oleat (OA) dan polietilen glikol (PEG) pada nanopartikel magnetit untuk pemisahan mikroplastik polyethylene terephthalate (PET) di media air. Penambahan surfaktan memungkinkan nanopartikel dapat terdispersi dengan baik dan lebih stabil. Nanopartikel magnetit disintesis dari pasir besi pantai Watu Ulo Jember dengan metode co-precipitation. Nanopartikel magnetit dikarakterisasi menggunakan PSA untuk mengetahui distribusi ukuran partikel dan FTIR untuk menentukan gugus fungsi pada n-Fe3O4 yang telah dimodifikasi dengan OA dan PEG. Ukuran partikel yang didapatkan berkisar antara 458,7–955,4 nm dengan intensitas tertinggi 712,4 nm. Efisiensi adsorpsi mikroplastik yang diperoleh menggunakan n-Fe3O4 adalah 77,8%, n-Fe3O4/PEG 91,7%, dan n- Fe3O4/OA 95,2%.

Fulltext View|Download
Keywords: Mikroplastik; Magnetit; Nanopartikel; Pasir Besi; Surfaktan

Article Metrics:

  1. Alshammari, B. H., Lashin, M. M. A., Mahmood, M. A., Al-Mubaddel, F. S., Ilyas, N., Rahman, N., Sohail, M., Khan, A., Abdullaev, S. S., Khan, R. 2023. Organic and Inorganic Nanomaterials: Fabrication, Properties and Applications. RSC Advances, 13(20): 13735–13785. https://doi.org/10.1039/D3RA01421E
  2. Antarnusa, G., Jayanti, P. D., Denny, Y. R., Suherman, A. 2022. Utilization of co-Precipitation Method on Synthesis of Fe3O4/PEG with Different Concentrations of PEG for Biosensor Applications. Materialia, 25: 101525. https://doi.org/10.1016/j.mtla.2022.101525
  3. Budhiraja, V., Mušič, B., Krzan, A. 2022. Magnetic Extraction of Weathered Tire Wear Particles and Polyethylene Microplastics. Polymers, 14(23): 5189. https://doi.org/10.3390/polym14235189
  4. Campanale, Massarelli, Savino, Locaputo, & Uricchio. 2020. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. International Journal of Environmental Research and Public Health, 17(4): 1212. https://doi.org/10.3390/ijerph17041212
  5. Cheng, Y. L., Kim, J.-G., Kim, H.-B., Choi, J. H., Fai Tsang, Y., Baek, K. 2021. Occurrence and Removal of Microplastics in Wastewater Treatment Plants and Drinking Water Purification Facilities: A review. Chemical Engineering Journal, 410: 128381. https://doi.org/10.1016/j.cej.2020.128381
  6. Dewi, R., Husain, H., Sulthonul, M., Pratapa, S. 2020. The Effect of Precipitation pH on Structural Properties of Magnetite Nanoparticles. 030014. https://doi.org/10.1063/5.0015422
  7. Gao, W., Zhang, Y., Mo, A., Jiang, J., Liang, Y., Cao, X., He, D. 2022. Removal of Microplastics in Water: Technology Progress and Green Strategies. Green Analytical Chemistry, 3: 100042. https://doi.org/10.1016/j.greeac.2022.100042
  8. Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., Ross, P. S. 2018. Retention of Microplastics in a Major Secondary Wastewater Treatment Plant in Vancouver, Canada. Marine Pollution Bulletin, 133: 553–561. https://doi.org/10.1016/j.marpolbul.2018.06.006
  9. Grbic, J., Nguyen, B., Guo, E., You, J. B., Sinton, D., Rochman, C. M. 2019. Magnetic Extraction of Microplastics from Environmental Samples. Environmental Science & Technology Letters, 6(2): 68–72. https://doi.org/10.1021/acs.estlett.8b00671
  10. Hamzah, S., Ying, L. Y., Azmi, A. A. Abd. R., Razali, N. A., Hairom, N. H. H., Mohamad, N. A., Harun, M. H. C. 2021. Synthesis, Characterization and Evaluation on the Performance of Ferrofluid for Microplastic Removal from Synthetic and Actual Wastewater. Journal of Environmental Chemical Engineering, 9(5): 105894. https://doi.org/10.1016/j.jece.2021.105894
  11. Hossain, M. R., Jiang, M., Wei, Q., Leff, L. G. 2019. Microplastic Surface Properties Affect Bacterial Colonization in Freshwater. Journal of Basic Microbiology, 59(1): 54–61. https://doi.org/10.1002/jobm.201800174
  12. Kirstein, I. V., Gomiero, A., Vollertsen, J. 2021. Microplastic Pollution in Drinking Water. Current Opinion in Toxicology, 28: 70–75. https://doi.org/10.1016/j.cotox.2021.09.003
  13. Li, L., Li, D., Zhang, Z. 2022. Colloidal Stability of Magnetite Nanoparticles Coated by Oleic Acid and 3-(N,N-Dimethylmyristylammonio) Propane Sulfonate in Solvents. Frontiers in Materials, 9. https://doi.org/10.3389/fmats.2022.893072
  14. Ma, B., Xue, W., Ding, Y., Hu, C., Liu, H., Qu, J. 2019. Removal Characteristics of Microplastics by Fe-based Coagulants During Drinking Water Treatment. Journal of Environmental Sciences, 78: 267–275. https://doi.org/10.1016/j.jes.2018.10.006
  15. Marciello, M., Luengo, Y., P. Morales, M. 2016. Iron Oxide Nanoparticles for Cancer Diagnosis and Therapy. In Nanoarchitectonics for Smart Delivery and Drug Targeting, 667–694. Elsevier. https://doi.org/10.1016/B978-0-323-47347-7.00024-0
  16. Masuku, M., Ouma, L., Pholosi, A. 2021. Microwave Assisted Synthesis of Oleic Acid Modified Magnetite Nanoparticles for Benzene Adsorption. Environmental Nanotechnology, Monitoring & Management, 15: 100429. https://doi.org/10.1016/j.enmm.2021.100429
  17. Meijer, L. J. J., van Emmerik, T., van der Ent, R., Schmidt, C., Lebreton, L. 2021. More than 1000 Rivers Account for 80% of Global Riverine Plastic Emissions into the Ocean. Science Advances, 7(18). https://doi.org/10.1126/sciadv.aaz5803
  18. Misra, A., Zambrzycki, C., Kloker, G., Kotyrba, A., Anjass, M. H., Franco Castillo, I., Mitchell, S. G., Güttel, R., Streb, C. 2020. Water Purification and Microplastics Removal Using Magnetic Polyoxometalate‐Supported Ionic Liquid Phases (magPOM‐SILPs). Angewandte Chemie International Edition, 59(4): 1601–1605. https://doi.org/10.1002/anie.201912111
  19. Muthulakshmi, L., Mohan, S., Tatarchuk, T. 2023. Microplastics in Water: Types, Detection, and Removal Strategies. Environmental Science and Pollution Research, 30(36): 84933–84948. https://doi.org/10.1007/s11356-023-28460-6
  20. Niholan Tukan, D., Rosmainar Tambunan, L. 2023. A Review: Optimum Conditions for Magnetite Synthesis (Fe3O4), 17(2)
  21. Nuzully, S., Kato, T., Iwata, S., & Suharyadi, D. E. 2013. Pengaruh Konsentrasi Polyethylene glycol (PEG) pada Sifat Kemagnetan Nanopartikel Magnetik PEG-Coated Fe3O4 Jurnal Fisika Indonesia Pengaruh Konsentrasi Polyethylene glycol (PEG) pada Sifat Kemagnetan Nanopartikel Magnetik PEG-Coated Fe3O4. 51
  22. Oehlsen, O., Cervantes-Ramírez, S. I., Cervantes-Avilés, P., Medina-Velo, I. A. 2022. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. ACS Omega, 7(4): 3134–3150. https://doi.org/10.1021/acsomega.1c05631
  23. Oktaviani Elsafitri, Nasri MZ, Frastica Deswardani. 2020. Sintesis Dan Karakterisasi Nanopartikel Fe3O4 (Magnetite) Dari Pasir Besi Sungai Batanghari Jambi Yang Dienkapsulasi Dengan Polyethylene Glycol (Peg-4000). www. jurnal.untad.ac.id/jurnal/index.php/EPFT/index
  24. Osman, A. I., Hosny, M., Eltaweil, A. S., Omar, S., Elgarahy, A. M., Farghali, M., Yap, P. S., Wu, Y. S., Nagandran, S., Batumalaie, K., Gopinath, S. C. B., John, O. D., Sekar, M., Saikia, T., Karunanithi, P., Hatta, M. H. M., Akinyede, K. A. 2023. Microplastic sources, formation, toxicity and remediation: a review. In Environmental Chemistry Letters, 21(4): 2129–2169. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10311-023-01593-3
  25. Plohl, O., Sep, N., Zemljič, L. F., Vujanović, A., Čolnik, M., Van Fan, Y., Škerget, M., Klemeš, J. J., Čuček, L., Valh, J. V. 2022. Fragmentation of Disposed Plastic Waste Materials in Different Aquatic Environments. Chemical Engineering Transactions, 94: 1249–1254. https://doi.org/10.3303/CET2294208
  26. Prasetyowati, R., Widiawati, D., Swastika, P. E., Ariswan, A., Warsono, W. 2021. Sintesis dan Karakterisasi Nanopartikel Magnetit (Fe3O4) Berbasis Pasir Besi Pantai Glagah Kulon Progo dengan Metode Kopresipitasi pada Berbagai Variasi Konsentrasi NH4OH. Jurnal Sains Dasar, 10(2): 57–61. https://doi.org/10.21831/jsd.v10i2.43043
  27. Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., Draghi, S., D’Amore, E., Rinaldo, D., Matta, M., Giorgini, E. 2021. Plasticenta: First Evidence of Microplastics in Human Placenta. Environment International, 146: 106274. https://doi.org/10.1016/j.envint.2020.106274
  28. Rahmawati, R., Taufiq, A., Sunaryono, S., Fuad, A., Yuliarto, B., Suytman, S., Kurniadi, D. 2018. Synthesis of Magnetite (Fe3O4) Nanoparticles from Iron Sands by Co - precipitation - Ultrasonic Irradiation Methods. Journal of Materials and Environmental Sciences, 9(1): 155–160. https://doi.org/10.26872/jmes.2018.9.1.19
  29. Sadati Behbahani, N., Rostamizadeh, K., Yaftian, M. R., Zamani, A., Ahmadi, H. 2014. Covalently Modified Magnetite Nanoparticles with PEG: Preparation and Characterization as Nano-adsorbent for Removal of Lead from Wastewater. Journal of Environmental Health Science and Engineering, 12(1): 103. https://doi.org/10.1186/2052-336X-12-103
  30. Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., Liebmann, B. 2019. Detection of Various Microplastics in Human Stool. Annals of Internal Medicine, 171(7): 453–457. https://doi.org/10.7326/M19-0618
  31. Shi, X., Zhang, X., Gao, W., Zhang, Y., He, D. 2022. Removal of Microplastics from Water by Magnetic Nano-Fe3O4. Science of The Total Environment, 802: 149838. https://doi.org/10.1016/j.scitotenv.2021.149838
  32. Syahida, A. N., Sutanto, H., Alkian, I., Irianti, F. D. D., Wibowo, A. A., Priyono, P. 2021. Synthesized and Characterization Nanosized Synthesis Fe3O4 Powder from Natural Iron Sand. Journal of Physics: Conference Series, 1943(1). https://doi.org/10.1088/1742-6596/1943/1/012013
  33. Talvitie, J., Mikola, A., Koistinen, A., Setälä, O. 2017. Solutions to Microplastic Pollution – Removal of Microplastics from Wastewater Effluent with Advanced Wastewater Treatment Technologies. Water Research, 123: 401–407. https://doi.org/10.1016/j.watres.2017.07.005
  34. Tatinting, G. D., Aritonang, H. F., Wuntu, A. D. 2021. Sintesis Nanopartikel Fe3O4–Polietilen Glikol (PEG) 6000 Dari Pasir Besi Pantai Hais Sebagai Adsorben Logam Kadmium (Cd). Chemistry Progress, 14(2): 131. https://doi.org/10.35799/cp.14.2.2021.37192
  35. Wang, J., Sun, C., Huang, Q.-X., Chi, Y., & Yan, J.-H. 2021. Adsorption and Thermal Degradation of Microplastics from Aqueous Solutions by Mg/Zn Modified Magnetic Biochars. Journal of Hazardous Materials, 419: 126486. https://doi.org/10.1016/j.jhazmat.2021.126486
  36. Yang, K., Peng, H., Wen, Y., & Li, N. 2010. Re-examination of Characteristic FTIR Spectrum of Secondary Layer in Bilayer Oleic Acid-coated Fe3O4 Nanoparticles. Applied Surface Science, 256(10): 3093–3097. https://doi.org/10.1016/j.apsusc.2009.11.079
  37. Yang, L., Li, K., Cui, S., Kang, Y., An, L., & Lei, K. 2019. Removal of Microplastics in Municipal Dewage from China’s Largest Water Reclamation Plant. Water Research, 155: 175–181. https://doi.org/10.1016/j.watres.2019.02.046
  38. Yusuf, N. A., Aksa, R., Juniawan, F., Sekolah, C., Ilmu, T., & Makassar, F. 2020. Karakteristik Fisik Solid Lipid Nanoparticle (SLN) Glibenklamid, 6(2)

Last update:

No citation recorded.

Last update: 2025-04-01 02:28:06

No citation recorded.