skip to main content

Pengaruh Durasi Penggunaan Micro Bubble Terhadap Kualitas Air Limpasan Green Roof Ekstensif Berdasarkan Variasi Vegetasi

Departemen Teknik Sipil dan Lingkungan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Indonesia

Received: 29 Jul 2024; Revised: 18 Mar 2025; Accepted: 29 Apr 2025; Available online: 25 May 2025; Published: 31 May 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Green roof menjadi salah satu alternatif metode pemanenan air hujan seiring dengan berkurangnya daerah resapan air. Penambahan nutrisi penunjang pertumbuhan tanaman membuat air limpasan green roof menjadi turun kualitasnya. Beberapa parameter kualitas air seperti kekeruhan, total dissolved oxygen (TDS), daya hantar listrik, dan total suspended solid (TSS) masih belum memenuhi baku mutu air baku. Micro bubble (MB) menjadi salah satu metode alternatif pengolahan air limbah melalui proses aerasi untuk mempercepat waktu biodegradasi dua kali lipat lebih cepat. Dengan demikian, penelitian ini bertujuan untuk menganalisis pengaruh MB, menentukan status mutu, dan nilai efektivitas air limpasan green roof. Penelitian ini menggunakan variasi tanpa vegetasi dan vegetasi berupa lili paris, kacang hias, krokot mawar. Kinerja MB akan diuji melalui uji parameter temperatur, TDS, pH, dissolved oxygen (DO), chemical oxygen demand (COD), amonia, dan nitrit berdasarkan waktu pengoperasian MB selama 30, 45, 60, dan 75 menit. Acuan baku mutu menggunakan Peraturan Pemerintah Nomor 22 Tahun 2021 Lampiran VI. Penentuan status mutu air menggunakan metode STORET. Penggunaan micro bubble dalam proses pengolahan air limpasan green roof mengurangi beberapa parameter pencemar air dan telah memenuhi standar mutu untuk temperatur, TDS, pH, DO, dan amoniak. Durasi pengoperasian MB selama 75 menit menghasilkan efektivitas penyisihan TDS, COD, amonia dan nitrit terbesar dengan nilai efisiensi mencapai 7,06%, 17,43%, 75,42% dan 41,84%. Nilai efisiensi penyisihan pada waktu pengoperasian MB selama 75 menit tersebut ditunjukkan dengan perubahan status mutu air limpasan green roof dengan kelas B (tercemar ringan) berdasarkan US-EPA. Status mutu ini lebih baik dibandingkan waktu pengoperasian 30, 45, dan 60 menit yang mencapai Kelas C (tercemar sedang). Strategi optimalisasi dan implementatif untuk pengolahan air limpasan sehingga kualitas air dapat memenuhi baku mutu.

 

Green roofs have emerged as an alternative method for rainwater harvesting in response to the decreasing infiltration areas. However, adding nutrients to support plant growth can degrade the quality of green roof runoff. Water quality parameters, such as turbidity, total dissolved solids (TDS), electrical conductivity, and total suspended solids (TSS), still need to meet the standard water quality criteria. Microbubbles (MB) present a promising alternative wastewater treatment method through aeration, significantly accelerating biodegradation. This study aims to analyze the effect of MB, determine water quality status, and assess the effectiveness of green roof runoff. The research involved variations with and without vegetation, specifically using plants like spider lily (Chlorophytum comosum), ornamental beans (Arachis pintoi), and purslane (Portulaca grandiflora). MB performance was evaluated through parameter tests for temperature, TDS, pH, dissolved oxygen (DO), chemical oxygen demand (COD), ammonia, and nitrite over MB operation times of 30, 45, 60, and 75 minutes. The water quality standards referenced were based on Indonesian Government Regulation No. 22 of 2021, Appendix VI. Water quality status was determined using the STORET method. Using microbubbles to treat green roof runoff reduced several water pollutants and met quality standards for temperature, TDS, pH, DO, and ammonia. MB operation for 75 minutes yielded the highest removal efficiencies for TDS, COD, ammonia, and nitrite at 7.06%, 17.43%, 75.42%, and 41.84%, respectively. This operation duration improved the runoff water quality status to Class B (lightly polluted) based on US-EPA standards, compared to Class C (moderately polluted) for the 30, 45, and 60-minute operation times. Optimization and implementation strategies for wastewater treatment are essential to ensure water quality meets established standards.

Fulltext View|Download
Keywords: aeration; extensive green roof; water quality; micro bubble; rainwater harvesting

Article Metrics:

  1. Agarwal, A., Ng, W. J., dan Liu, Y. (2011). Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84(9), 1175–1180. https://doi.org/10.1016/j.chemosphere.2011.05.054
  2. Agustia, S., C. Wirasembada, Y., K. Saptomo, S., dan Chadirin, Y. (2017). Analisis kualitas air hujan dan air limpasan melalui media pasir dan zeolit pada green roof berdasarkan parameter fisika dan kimia. 113–121
  3. Ahmadi, M., Doroodmand, M. M., Nabi Bidhendi, G., Torabian, A., dan Mehrdadi, N. (2022). Efficient wastewater treatment via aeration through a novel nanobubble system in sequence batch reactors. Frontiers in Energy Research, 10(September), 1–8. https://doi.org/10.3389/fenrg.2022.884353
  4. Azevedo, A., Oliveira, H., dan Rubio, J. (2019). Bulk nanobubbles in the mineral and environmental areas: Updating research and applications. Advances in Colloid and Interface Science, 271, 101992. https://doi.org/10.1016/j.cis.2019.101992
  5. Berndtsson, J. C. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351–360
  6. Chozin, M. A., Nuryana, F. I., Guntoro, D., Sumiahadi, A., Badriyah, R. N., dan Wibowo, A. P. (2018). Potency of arachis pintoi krap. dan greg. as biomulch in the tropical upland agriculture. IOP Conference Series: Earth and Environmental Science, 196(1). https://doi.org/10.1088/1755-1315/196/1/012011
  7. Deendarlianto, Wiratni, Tontowi, A. E., Indarto, dan Iriawan, A. G. W. (2015). The implementation of a developed microbubble generator on the aerobic wastewater treatment. International Journal of Technology, 6(6), 924–930. https://doi.org/10.14716/ijtech.v6i6.1696
  8. del Álamo, A. C., Pariente, M. I., Molina, R., dan Martínez, F. (2022). Advanced bio-oxidation of fungal mixed cultures immobilized on rotating biological contactors for the removal of pharmaceutical micropollutants in a real hospital wastewater. Journal of Hazardous Materials, 425(December 2021). https://doi.org/10.1016/j.jhazmat.2021.128002
  9. Drewnowski, J., Remiszewska-Skwarek, A., Duda, S., dan Łagód, G. (2019). Aeration process in bioreactors as the main energy consumer in a wastewater treatment plant. Review of solutions and methods of process optimization. Processes, 7(5). https://doi.org/10.3390/pr7050311
  10. Dusza, Y., Barot, S., Kraepiel, Y., Lata, J.-C., Abbadie, L., dan Raynaud, X. (2017). Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type. Ecology and Evolution, 7(7), 2357–2369
  11. El-sherbeny, T. M. S., Mousa, A. M., dan Zhran, M. A. (2023). Response of peanut (Arachis hypogaea L.) plant to bio-fertilizer and plant residues in sandy soil. Environmental Geochemistry and Health, 45(2), 253–265. https://doi.org/10.1007/s10653-022-01302-z
  12. Enagbonma, B. J., Fadiji, A. E., Ayangbenro, A. S., dan Babalola, O. O. (2023). Communication between Plants and Rhizosphere Microbiome: Exploring the Root Microbiome for Sustainable Agriculture. Microorganisms, 11(8). https://doi.org/10.3390/microorganisms11082003
  13. Fan, W., Li, Y., Lyu, T., Chen, Z., Jarvis, P., Huo, Y., Xiao, D., Huo, M., dan others. (2023). A modelling approach to explore the optimum bubble size for micro-nanobubble aeration. Water Research, 228, 119360
  14. Febiyanto, F. (2020). Effects of temperature and aeration on the dissolved oxygen (do) values in freshwater using simple water bath reactor: a brief report. Walisongo Journal of Chemistry, 3(1), 25. https://doi.org/10.21580/wjc.v3i1.6108
  15. Furia, E., Beneduci, A., Malacaria, L., Fazio, A., La Torre, C., dan Plastina, P. (2021). Modeling the solubility of phenolic acids in aqueous media at 37◦c. Molecules, 26(21). https://doi.org/10.3390/molecules26216500
  16. Han, Y., Feng, G., dan Ouyang, Y. (2018). Effects of soil and water conservation practices on runoff, sediment and nutrient losses. Water (Switzerland), 10(10), 1–13. https://doi.org/10.3390/w10101333
  17. Harfadli, M. M. (2019). Estimasi koefisien transfer oksigen (kla) pada metode aerasi fine bubble diffuser. studi kasus : pengolahan air lindi tpa manggar kota balikpapan. JST (Jurnal Sains Terapan), 5(2). https://doi.org/10.32487/jst.v5i2.662
  18. Hartini, E. (2012). Cascade aerator dan bubble aerator dalam menurunkan kadar mangan air sumur gali. Jurnal Kesehatan Masyarakat, 8(1), 41–50
  19. Heriyati, E., Rustadi, R., Isnansetyo, A., dan Triyatmo, B. (2020). Uji aerasi microbubble dalam menentukan kualitas air, nilai nutrition value coefficient (nvc), faktor kondisi (k) dan performa pada budidaya nila merah (oreocrhomis sp.). Jurnal Pertanian Terpadu, 8(1), 27–41. https://doi.org/10.36084/jpt..v8i1.232
  20. Hermanus, M. B., Polii, B., dan Mandey, L. C. (2015). Aerob and anaerob treatments to bod, cod, ph, and dominant of bacteria of dessicated coconut industry wastewater of pt. global coconut, radey, south minahasa. Jurnal Ilmu Dan Teknologi Pangan, 3(2), 48–59
  21. Hidayah, E. N., Djalalembah, A., Asmar, G. A., dan Cahyonugroho, O. H. (2018). Pengaruh aerasi dalam constructed wetland pada pengolahan air limbah domestik. Jurnal Ilmu Lingkungan, 16(2), 155. https://doi.org/10.14710/jil.16.2.155-161
  22. Hu, L., dan Xia, Z. (2018). Application of ozone micro-nano-bubbles to groundwater remediation. Journal of Hazardous Materials, 342, 446–453. https://doi.org/10.1016/j.jhazmat.2017.08.030
  23. Indrayani, L., dan Rahmah, N. (2018). Nilai Parameter Kadar pencemar sebagai penentu tingkat efektivitas tahapan pengolahan limbah cair industri batik. Jurnal Rekayasa Proses, 12(1), 41. https://doi.org/10.22146/jrekpros.35754
  24. Irfan, M., Waqas, S., Khan, J. A., Rahman, S., Kruszelnicka, I., Ginter-Kramarczyk, D., Legutko, S., Ochowiak, M., Włodarczak, S., dan Czernek, K. (2022). Effect of operating parameters and energy expenditure on the biological performance of rotating biological contactor for wastewater treatment. Energies, 15(10). https://doi.org/10.3390/en15103523
  25. Jayanthi, S., dan Arico, Z. (2017). Pengaruh kerapatan vegetasi terhadap produktivitas serasah hutan taman nasional gunung leuser. Elkawnie, 3(2), 151–160. https://doi.org/10.22373/ekw.v3i2.1888
  26. Kang, D., dan Kim, K. (2021). Real wastewater treatment using a moving bed and wastewater-borne algal–bacterial consortia with a short hydraulic retention time. Processes, 9(1), 1–15. https://doi.org/10.3390/pr9010116
  27. Khan, P., Zhu, W., Huang, F., Gao, W., dan Khan, N. A. (2020). Micro-nanobubble technology and water-related application. Water Science and Technology: Water Supply, 20(6), 2021–2035. https://doi.org/10.2166/ws.2020.121
  28. Kustiyaningsih, E., dan Irawanto, R. (2020). Pengukuran total dissolved solid (tds) dalam fitoremediasi deterjen dengan tumbuhan sagittaria lancifolia. Jurnal Tanah Dan Sumberdaya Lahan, 7(1), 143–148. https://doi.org/10.21776/ub.jtsl.2020.007.1.18
  29. Kusuma, Y. R., dan Yanti, I. (2021). Effect of water content in soil on c-organic levels and soil acidity (pH). Indonesian Journal of Chemical Research, 6(2), 92–97
  30. Lim, C. Y. (2024). Constructed wetland for wastewater treatment. UTAR
  31. Liu, B., Wang, W. lin, Han, R. ming, Sheng, M., Ye, L. lin, Du, X., Wu, X. ting, dan Wang, G. xiang. (2016). Dynamics of dissolved oxygen and the affecting factors in sediment of polluted urban rivers under aeration treatment. Water, Air, and Soil Pollution, 227(6). https://doi.org/10.1007/s11270-016-2869-0
  32. Lusiana, N., Widiatmono, B. R., dan Luthfiyana, H. (2020). Beban pencemaran bod dan karakteristik oksigen terlarut di sungai brantas kota malang. Jurnal Ilmu Lingkungan, 18(2), 354–366. https://doi.org/10.14710/jil.18.2.354-366
  33. Lv, J., dan Wu, Y. (2021). Nitrogen removal by different riparian vegetation buffer strips with different stand densities and widths. Water Supply, 21(7), 3541–3556. https://doi.org/10.2166/ws.2021.119
  34. Made Joni, I., Subhan, U., Hanam, E. S., Azhary, S. Y., Pratopo, L. H., Hermawan, W., Miranti, M., dan Panatarani, C. (2020). Application of fine bubbles technology in wastewater treatment plant (WWTP) for aquaculture system. AIP Conference Proceedings, 2219(May). https://doi.org/10.1063/5.0003078
  35. Man, Y., Shen, W., Chen, X., Long, Z., dan Corriou, J. P. (2018). Dissolved oxygen control strategies for the industrial sequencing batch reactor of the wastewater treatment process in the papermaking industry. Environmental Science: Water Research and Technology, 4(5), 654–662. https://doi.org/10.1039/c8ew00035b
  36. Manik, A. S. I., Saptomo, S. K., dan Chadirin, Y. (2024). Rancangan sumur resapan pada bangunan hunian vertikal sebagai implementasi kriteria greenbuilding. Jurnal Teknik Sipil Dan Lingkungan, 9(01), 93–104. https://doi.org/10.29244/jsil.9.1.93-104
  37. Mawarni, D. I., dan Suryani, P. E. (2023). Kaji Eksperimental pengolahan air limbah “grey water” dengan menggunakan teknologi microbubble generator sebagai aerator. Jurnal Crankshaft, 6(3), 105–110. https://jurnal.umk.ac.id/index.php/cra/article/view/11359
  38. Mubarak, M. (2018). Simulation of surface runoff reduction in urban buffer area using green roof system. Jurnal Sains Dan Teknologi Mitigasi Bencana, 13(1), 24–33
  39. Munfaridah, A., Saraswati, S. P., dan Mahathir, J. S. (2022). Pengaruh sistem aerasi intermittent terhadap removal organik dan nitrogen pada pengolahan air limbah domestik kamar mandi umum. Jurnal Ilmu Lingkungan, 20(1), 102–114. https://doi.org/10.14710/jil.20.1.102-114
  40. Pramleonita, M., Yuliani, N., Arizal, R., dan Wardoyo, S. E. (2018). Parameter fisika dan kimia air kolam ikan nila hitam (oreochromis niloticus). Jurnal Sains Natural, 8(1), 24–34. https://doi.org/10.31938/jsn.v8i1.107
  41. Rahmawan, M. F., Pramitasari, N., dan Kartini, A. M. (2023). Pengaruh aerasi terhadap penurunan kadar cod limbah cair laundry pada proses fitotreatment menggunakan tanaman eceng gondok (eichhornia crassipes). Jurnal Sains danTeknologi Lingkungan, 15(1), 89–105. https://doi.org/10.20885/jstl.vol15.iss1.art7
  42. Rivai, V., Wulandari, C. D. R., dan Setyobudiarso, H. (2022). Efektivitas metode aerasi bubble aerator dalam menurunkan kadar bod dan cod air limbah rps laundry kota malang. Jurnal Mahasiswa" ENVIRO", 1(2), 1–8
  43. Rosalina, F., dan Maipauw, N. J. (2019). Sifat kimia tanah pada beberapa tipe vegetasi. J. Med., 11(1), 1–9
  44. Royani, A. (2020). Pengaruh suhu terhadap laju korosi baja karbon rendah dalam media air laut. Jurnal Simetrik, 10(2), 344–349
  45. Shafique, M., Kim, R., dan Kyung-Ho, K. (2018). Green roof for stormwater management in a highly urbanized area: The case of Seoul, Korea. Sustainability (Switzerland), 10(3), 1–14. https://doi.org/10.3390/su10030584
  46. Shafique, M., Kim, R., dan Rafiq, M. (2018). Green roof benefits, opportunities and challenges – A review. Renewable and Sustainable Energy Reviews, 90(April 2017), 757–773. https://doi.org/10.1016/j.rser.2018.04.006
  47. Stovin, V., Vesuviano, G., dan Kasmin, H. (2012). The hydrological performance of a green roof test bed under UK climatic conditions. Journal of Hydrology, 414, 148–161
  48. Terry, J. A., Sadeghian, A., dan Lindenschmidt, K. E. (2017). Modelling dissolved oxygen/sediment oxygen demand under ice in a shallow eutrophic prairie reservoir. Water (Switzerland), 9(2). https://doi.org/10.3390/w9020131
  49. Thinojah, T., dan Ketheesan, B. (2022). Iron removal from groundwater using granular activated carbon filters by oxidation coupled with the adsorption process. Journal of Water and Climate Change, 13(5), 1985–1994. https://doi.org/10.2166/wcc.2022.126
  50. Vijayaraghavan, K., dan Raja, F. D. (2014). Design and development of green roof substrate toimprove runoff water quality: Plant growth experiments and adsorption. Water Research, 63, 94–101. https://doi.org/10.1016/j.watres.2014.06.012
  51. Virha, F. A., Bastamansyah, dan Bayfurqon, F. M. (2020). Pengaruh sistem aerasi dan pemangkasan akar terhadap produksi bayam merah (Amaranthus Tricolor L.) pada hidroponik rakit apung. Agrotekma, 5(1), 82–91
  52. Wang, H., dan Zhang, L. (2017). Research on the nitrogen removal efficiency and mechanism of deep subsurface wastewater infiltration systems by fine bubble aeration. Ecological Engineering, 107, 33–40. https://doi.org/10.1016/j.ecoleng.2017.07.005
  53. Wang, J., Yang, H., Liu, X., Wang, J., dan Chang, J. (2020). The impact of temperature and dissolved oxygen (DO) on the partial nitrification of immobilized fillers, and application in municipal wastewater. RSC Advances, 10(61), 37194–37201. https://doi.org/10.1039/d0ra05908k
  54. Wang, L., Ji, B., Hu, Y., Liu, R., dan Sun, W. (2017). A review on in situ phytoremediation of mine tailings. Chemosphere, 184, 594–600. https://doi.org/10.1016/j.chemosphere.2017.06.025
  55. Wei, X., Lyu, S., Yu, Y., Wang, Z., Liu, H., Pan, D., dan Chen, J. (2017). Phylloremediation of air pollutants: Exploiting the potential of plant leaves and leaf-associated microbes. Frontiers in Plant Science, 8(2), 1–23. https://doi.org/10.3389/fpls.2017.01318
  56. Xia, Z., dan Hu, L. (2018). Treatment of organics contaminated wastewater by ozone micro-nano-bubbles. Water (Switzerland), 11(1). https://doi.org/10.3390/w11010055
  57. Yuniarti, D. P., Komala, R., dan Aziz, S. (2019). Pengaruh proses aerasi terhadap pengolahan limbah cair pabrik kelapa sawit di ptpn vii secara aerobik. Jurnal Redoks, 4(2), 7–16. https://doi.org/10.31851/redoks.v4i2.3504
  58. Zhang, H., Lyu, T., Bi, L., Tempero, G., Hamilton, D. P., dan Pan, G. (2018). Combating hypoxia/anoxia at sediment-water interfaces: A preliminary study of oxygen nanobubble modified clay materials. Science of the Total Environment, 637–638, 550–560. https://doi.org/10.1016/j.scitotenv.2018.04.284
  59. Zilmy, D. O., Utomo, K. P., dan Kadaria, U. (2022). Pengaruh koefisien transfer gas (kla) terhadap penurunan parameter besi (fe) dalam air sumur gali menggunakan multiple tray aerator. Jurnal Rekayasa Lingkungan Tropis, 3(1), 91–100
  60. Zorai, A., Benzahi, K., Labed, B., Ouakouak, A., Serraoui, M., dan Bouhoreira, A. (2023). Performance of Canna indica and Typha latifolia in mono and mixed culture for secondary wastewater treatment in constructed wetlands with vertical flows under arid conditions (Touggourt, Algeria). Water Practice and Technology, 18(1), 53–67. https://doi.org/10.2166/wpt.2022.163

Last update:

No citation recorded.

Last update: 2025-06-03 03:00:35

No citation recorded.