skip to main content

Pengembangan Bioplastik Berbahan Dasar Pati Kulit Pisang Kepok Menggunakan Nanofiber Selulosa Kulit Daun Lidah Buaya sebagai Filler

1Program Studi Biologi, Fakultas sains dan Teknologi,Universitas Islam Negeri Syarif Hidayatullah Jakarta, Indonesia

2Progran Studi Biologi, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Indonesia

3Program Studi Pendidikan Kimia, Fakultas Ilmu Tarbiyah dan Keguruan, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Indonesia

Received: 22 Jan 2025; Revised: 15 Jun 2025; Accepted: 30 Jun 2025; Available online: 25 Jul 2025; Published: 31 Jul 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Pati sebagai bahan dasar bioplastik membutuhkan bahan penguat atau filler. Selulosa adalah bahan alami untuk filler, semakin kuat bila ditambahkan dalam bentuk nano. Kulit pisang kepok dan kulit daun lidah buaya merupakan limbah organik yang dapat digunakan sebagai bahan bioplastik, yaitu sebagai sumber pati dan selulosa.Tujuan penelitian ini untuk memperoleh konsentrasi nanofiber selulosa dari kulit daun lidah buaya dalam pengembangan bioplastik berbahan dasar pati dari kulit pisang kepok. Bioplastik yang berbahan dasar pati kulit pisang kepok diperkuat dengan perlakuan penambahan nanofiber selulosa dari kulit daun lidah buaya (0%, 2%, 4% dan 6% dari 5 g berat pati) dengan 5 kali pengulangan, dan ditambahkan plastisizer berupa gliserol (40%). Defibrilasi selulosa menggunakan ultrafine grinder Supermasscoloider. Bioplastik dicetak menggunakan metode casting molding. Parameter yang diamati adalah kuat Tarik, ketahanan air, dan waktu biodehradasi. Penambahan nanofiber selulosa dari kulit daun lidah buaya meningkatkan kualitas bioplastik. Hasil terbaik diperoleh pada penambahan nanofiber selulosa 6% yang memiliki nilai kuat tarik 38,89±6,11 kgf/cm2, ketahanan air 75,30±3,61%, dan waktu biodegradasi 47,93 hari. Penambahan 6% nanofiber selulosa dari kulit daun lidah buaya bisa digunakan pada pengembangan bioplastik berbahan dasar pati dari kulit pisang kepok.

Fulltext View|Download
Keywords: Bioplastik; Biodegradasi; Filler; Nanofiber; Kuat Tarik

Article Metrics:

  1. Ahn, H.K., T.L. Richard and T.D. Glanville, 2008. Optimum Moisture Levels for Biodegradation of Mortality Composting Envelope Materials. Waste Management, 28(8), 1411-1416. https://doi.org/10.1016/j.wasman.2007.05.022
  2. Alam, M.N., I. Illing, Nurmalasari and Kumalasari. 2018. Pengaruh Komposisi Kitosan Terhadap Sifat Biodegradasi dan Water Uptake Bioplastik dari Serbuk Tongkol Jagung. Al Kimia, 6(1), 24-33. https://doi.org/ 10.24252/al-kimia.v6i1.4778
  3. Asia and M.A. Zainul. 2017. Dampak Sampah Plastik Bagi Ekosistem Laut. Buletin Matric, 14(1), 44-48
  4. Asrofi, M. and E. Syafri. 2019. Moisture Resistance Of Sugarcane Bagasse Cellulose Filled Tapioca Starch Biocomposites: Effect of Cellulose Loading. International Journal of Progressive Sciences and Technologies (IJPSAT), 18(1), 01-04. http://ijpsat.ijsht-journals.org
  5. Atikah, M.S.N., R.A. Ilyas, S.M. Sapuan, M.R. Ishak, E.S. Zainudin, R. Ibrahim, A. Atiqah, M.N.M. Ansari and R. Jumaidin. 2019. Degradation and Physical Properties of Sugar Palm Starch/Sugar Palm Nanofibrillated Cellulose Bionanocomposite. Polimery/Polymers, 64(10), 680-689. https://doi.org/10.14314/ polimery.2019.10.5
  6. Borowik, A. and J. Wyszkowska. 2016. Soil Moisture As A Factor Affecting The Microbiological and Biochemical Activity of Soil. Plant, Soil and Environment, 62(6), 250-255. https://doi.org/10.17221/158/2016-PSE
  7. Briassoulis, D and A. Mistriotis. 2018. Key Parameters in Testing Biodegradation of Bio-Based Materials in Soil. Chemosphere, 1-31. https://doi.org/10.1016/j.chemosphere.2018.05.024
  8. Chang, P.R., R. Jian, J. Yu and X. Ma. 2010. Starch-Based Composites Reinforced with Novel Chitin Nanoparticles. Carbohydrate Polymers 80, 420-425
  9. Cheng, S., S. Panthapulakkal, M. Sain and A. Asiri. 2014. Aloe vera Rind Cellulose Nanofibers-Reinforced Films. Journal of Applied Polymer Science, 131(15), 1-9. https://doi.org/ 10.1002/ app.40592
  10. Dasumiati, N. Saridewi and M. Malik. 2019. Food Packaging Development of Bioplastic From Basic Waste of Cassava Peel (Manihot uttilisima) and Shrimp Shell. Materials Science and Engineering, 602(012053), 1-9. https://doi.org/10.1088/1757-899X/602/1/ 012053
  11. Fadahunsi, S., Oluwaseun and E. Garuba. 2012. Amylase Production by Aspergillus Flavus Associated with The Bio-Deterioration of Starch-Based Fermented Foods. New York Science, 5(1), 13-18
  12. Fonseca, A.J., J. Rosas, C.A. Aldapa, T. Benítez, B.M. Malo, A. Real and R. García. 2013. Effect of The Alkaline and Acid Treatments on The Physicochemical Properties of Corn Starch. Journal of Food, 11(s1), 67-74. https://doi.org/10.1080/19476337.2012.761651
  13. Gautam, N. and I. Kaur. 2013. Soil Burial Biodegradation Studies of Starch Grafted Polyethylene and Identification of Rhizobium Meliloti Therefrom. Journal of Environtment Chemistry and Ecotoxicology, 5(6), 147-158. https://doi.org/10.5897/JECE09.022
  14. Ginting, M.H.S. and M.F.R. Tarigan. 2015. Effect of Gelatinization Temperature and Chitosan on Mechanical Properties of Bioplastics from Avocado Seed Starch (Persea americana Mill) with Plasticizer Glycerol. The International Journal of Engineering and Science, 4(12), 36-43
  15. Granda, L. A., H. Oliver-Ortega, M.J. Fabra, Q. Tarrés, M.A. Pèlach, J.M. Lagarón and J.A. Méndez. 2020. Improved Process to Obtain Nanofibrillated Cellulose (CNF) Reinforced Starch Films with Upgraded Mechanical Properties and Barrier Character. Polymers, 12(5), 1-14. https://doi.org/10.3390/POLYM 12051071
  16. Gutiérrez, T.J. and V.A. Alvarez. 2016. Cellulosic Materials As Natural Fillers in Starch-Containing Matrix-Based Films. Polymer Bulletin. https://doi.org/10.1007/s00289-016-1814-0
  17. Hadisoewignyo, L., F. Kuncoro and R.R. Tjandrawinata. 2017. Isolation and Characterization of Agung Banana Peel Starch from East Java Indonesia. International Food Research Journal, 24(3), 1324-1330
  18. Ilyas, R. A., S.M. Sapuan, M.R. Ishak, E.S. Zainudin and M.S.N. Atikah. 2018. Characterization of Sugar Palm Nanocellulose and Its Potential for Reinforcement with A Starch-Based Composite. In Sugar Palm Biofibers, Biopolymers, and Biocomposites, pp. 189-220. https://doi.org/10.1201/9780429443923-10
  19. Jambeck, J. R., R. Geyer, C. Wilcox, T. Siegler, M. Perryman, A. Andrady, R. Narayan and K.L. Law. 2015. Plastic Waste Inputs from Land Into The Ocean. Science, 347(6223), 1655-1734. https://doi.org/10.1017/CBO9781107415386.010
  20. Kaewpham, N. and S.H. Gheewala. 2013. Greenhouse Gas Evaluation and Market Opportunity of Bioplastic Bags from Cassava in Thailand. Journal of Suatainable Energy and Environment, 4:15-19
  21. Kafy, A., H.C Kim, L. Zhai, J.W. Kim, L. Hai, Van, T.J. Kang and J. Kim. 2017. Cellulose Long Fibers Fabricated from Cellulose Nanofibers and Its Strong and Tough Characteristics. Scientific Reports, 7(1), 1-8. https://doi.org/10.1038/ s41598-017-17713-3
  22. Khalil, H.P.S.A., Y. Davoudpour, C.K. Saurabh, S. Hossain, A.S. Adnan, R. Dungani, M.T. Paridah, Z.I. Sarker, M.R.N. Fazita, M.I. Syakir and M.K.M. Haa. 2016. A Review on Nanocellulosic Fi Bres As New Material for Sustainable Packaging : Process and Applications. Renewable and Sustainable Energy Reviews, 64, 823-836
  23. Leoranzen, H., F.H. Hamzah, and Rahmayuni. 2019. Variasi Lama Waktu Perendaman Kulit Pisang Tanduk dalam Larutan Natrium Metabisulfit Terhadap Karakteristik Edible Film Pati Kulit Pisang Tanduk. Jurnal Online Mahasiswa Fakultas Pertanian, 6(1), 1-13
  24. Li, J.L., M. Zhou, G. Cheng, F. Cheng, Y. Lin and P.X. Zhu. 2019. Comparison of Mechanical Reinforcement Effects of Cellulose Nanofibers and Montmorillonite in Starch Composite. Starch/Staerke, 71(1-2). https://doi.org/10. 1002/ star.201800114
  25. Liu, X., Y. Jiang, C. Qin, S. Yang and X. Song. 2018. Enzyme-assisted Mechanical Grinding for Cellulose Nanofibers from Bagasse : Energy Consumption and Nanofiber Characteristics. Cellulose, 1. https://doi.org/10.1007/s10570-018-2071-1
  26. Marbun, E.S. 2012. Sintesis Bioplastik dari Pati Ubi Jalar Menggunakan Penguat Logam ZnO dan Penguat Alami Selulosa. Depok: Universitas Indonesia
  27. Marichelvam, M., M. Jawaid and M. Asim. 2019. Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials. Fibers, 7(32), 1-14
  28. Matondang, T.D.S., B. Wirjosentoso dan D. Yunus. 2013. Pembuatan Plastik Kemasan Terbiodegradasikan dari Plipropylena Tergrafting Maleat Anhidrida dengan Bahan Pengisi Pati Sagu Kelapa Sawit, Valensi, 3(2): 110-1116
  29. Miskiyah, Widaningrum and C. Winarti. 2011. Aplikasi Edible Coating Berbasis Pati Sagu dengan Penambahan Vitamin C pada Paprika Preferensi Konsumen dan Mutu Mikrobiologi. Jurnal Hortikultura, 21(1): 68-76
  30. Octaviani, M., E. Zaini and A. Djamaan. 2013. Kajian Biodegradasi Film Plastik Campuran Polistiren dengan Poli(3hidroksibutirat-Ko-3-Hidroksivalerat) dalam Tanah Secara In-Vitro. Jurnal Farmasi Andalas, 1(1), 42-47
  31. Onah, E., and T. Shambe. 2018. Degradation of Starch And Carboxymethylcellulose (CMC) By Extracellular Enzymes from Four Bacteria Species. Focus Nanotechnology Africa, 30-32. https://doi.org/10.13140/RG.2.2.19405.69606
  32. Panjaitan, R.M., Irdoni dan Bahruddin. 2017. Pengaruh Kadar dan Ukuran Selulosa Berbasis Batang Pisang Terhadap Sifat dan Morfologi Bioplastik Berbahan Pati Umbi Talas. Journal Fakultas Teknik, 4(1), 1-7
  33. Panthapulakkal, S., N. Ramezani, A.M. Asiri and M. Sain. 2014. Aloe vera Rind Nanofibers : Effect Of Isolation Process On The Tensile Properties Of Nanofibre Films. BioResources. 9(4), 7653-7665. https://doi.org/10.15376/biores.9.4. 7653- 7665
  34. Polman, E.M.N., G.M. Gruter, J.R. Parsons and A. Tietema. 2021. Science of The Total Environment Comparison of The Aerobic Biodegradation of Biopolymers and The Corresponding Bioplastics : A Review. Science of The Total Environment, 753, 1-13. https://doi.org/10.1016/j.scitotenv.2020.141953
  35. Pudjiastuti, W., A. Listyarini dan Sudirman. 2012. Polimer Nanokomposit sebagai Master Batch Polimer Biodegradable untuk Kemasan Makanan. Jurnal Riset Industri, 6(1): 51-60
  36. Purbasari, A., A.A. Wulandari dan F.M. Marasabessy. 2020. Sifat Mekanis dan Fisis Bioplastik dari Limbah Kulit Pisang: Pengaruh Jenis Dan Konsentrasi Pemlastis. Jurnal Kimia dan Kemasan, 42(2), 66. https://doi.org/ 10.24817/jkk.v42i2.5872
  37. Sinaga, R.F., G.M. Ginting, M.H.S. Ginting dan R. Hasibuan. 2014. Pengaruh Penambahan Gliserol terhadap Sifat Kekuatan Tarik dan Pemanjangan saat Putus dari Pati Umbi Talas. Jurnal Teknik Kimia USU, 3(2): 19-24
  38. Sivaramanan, S. 2014. Biodegradation of Saw in Plant Fertilizer. Research Journal of Agriculture and Foresty Sciences, 2, 13-19. https://doi.org/10.13140/2.1.1798.4008
  39. Song, J. H., R.J. Murphy, R. Narayan and G.B.H. Davies. 2009. Biodegradable and Compostable Alternatives to Conventional Plastics. Philosophical Transactions of The Royal Society B: Biological Sciences, 364, 2127-2139. https://doi.org/10.1098/rstb.2008.0289
  40. Wahyuningtyas, N. and H. Suryanto. 2017. Analysis of Biodegradation of Bioplastics Made of Cassava Starch. Journal of Mechanical Engineering Science and Technology, 1(1), 24-31. https://doi.org/10.17977/um016v1i12017p024
  41. Wardhani, D.H., A.E. Yuliana and A.S. Dewi. 2016. Natrium metabisulfit sebagai anti-browning agent pada Pencoklatan Enzimatik Rebung Ori (Bambusa arundinacea). Jurnal Aplikasi Teknologi Pangan, 5(4), 140-145
  42. Wibowo, P., J.A. Saputra, A. Ayucitra dan L.E. Setiawan. 2008. Isolasi Pati dari Pisang Kepok dengan Menggunakan Metode Alkaline Steeping. Widya Teknik, 7(2), 113-123
  43. Yuli, D., A. Chici dan S.D. Ismiyati. 2008. Sintesa Bioplastik dari Pati Pisang dan Gelatin dengan Plasticizer Gliserol. Universitas Lampung, Seminar Nasional Sains dan Teknologi-II
  44. Yuniarti, L.I., G.S. Hutomo and A. Rahim. 2014. Synthesis and Characterization of Bioplastic Based On Sago Starch (Metroxylon sp.). Agrotekbis, 2(1), 38-46
  45. Xanthos, M. 2010. Functional Fillers for Plastics. 2nd Edition, John Wiley & Sons, Hoboken, 14-16. http://dx.doi.org/10.1002/978352762984
  46. Zhong, L. and X. Peng. 2017. Biorenewable Nanofiber and Nanocrystal: Renewable Nanomaterials for Constructing Novel Nanocomposites. Handbook of Composites from Renewable Materials, 7(5), 155-226. https://doi.org/10.1002/9781119441632.ch130

Last update:

No citation recorded.

Last update: 2025-08-12 03:39:37

No citation recorded.