skip to main content

Effect of Moringa (Moringa oleifera) Leaf Flour Supplementation on Total Antioxidant Content of Sprague Dawley Rat Serum Given High-Fat Diet

Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Indonesia

Received: 16 Nov 2021; Published: 1 Jun 2022.

Citation Format:
Abstract

Background: Moringa oleifera leaf is high in quercetin which can be a source of exogenous antioxidants. Together with endogenous antioxidants, both the antioxidants will be able to counteract oxidative stress conditions.

Objectives: To analyze the effect of Moringa leaves flour supplementation on Total Antioxidants Content (TAC) of Sprague Dawley (SD) rat serum given a high-fat diet (HFD). 

Materials and Methods: A randomized control group post-test design was used on 24 SD rats which were divided into 4 groups, namely healthy control (K1), HFD (K2), supplementation with Moringa leaf flour at a dose of 100 mg/100 g BW/day (K3), and a dose of 200 mg/100 g BW/day (K4). After 28 days of supplementation, serum TAC was analyzed using the ELISA method. Data analysis used Paired-T Test, One Way ANOVA, and Post-Hoc Bonferroni follow-up test.

Results: The results showed that the TAC of groups K1, K2, K3, and K4 respectively were 4.806 ± 0.239, 1.323 ± 0.292, 4.020 ± 0.239, and 5.123 ± 0.695. There was a significant difference in serum TAC (p=0.000) between supplementation groups. Significant differences in serum TAC were also found in the supplementation group compared to the HFD control group.

Conclusion: Moringa leaves flour supplementation for 28 days at a dose of 200 mg/100 g BW/day increases serum total antioxidant content higher than at a dose of 100 mg/100 g BW/day.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research result, Ethical Clearence, form of submission declaration
Supplementary File
Subject
Type Research result, Ethical Clearence, form of submission declaration
  Download (382KB)    Indexing metadata
Keywords: High Fat Diet; Moringa Oleifera leaves Flour; TAC

Article Metrics:

  1. Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Biochem [Internet]. 2015 Jan 15;30(1):11–26. Available from: http://link.springer.com/10.1007/s12291-014-0446-0
  2. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev [Internet]. 2017;2017:1–13. Available from: https://www.hindawi.com/journals/omcl/2017/8416763/
  3. Ito F, Sono Y, Ito T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants [Internet]. 2019 Mar 25;8(3):72. Available from: https://www.mdpi.com/2076-3921/8/3/72
  4. Kim T-K, Yong HI, Kim Y-B, Kim H-W, Choi Y-S. Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Food Sci Anim Resour [Internet]. 2019 Aug;39(4):521–40. Available from: http://www.kosfaj.org/archive/view_article?doi=10.5851/kosfa.2019.e53
  5. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr J [Internet]. 2016;15(1):1–22. Available from: http://dx.doi.org/10.1186/s12937-016-0186-5
  6. Gulcin İ. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol [Internet]. 2020 Mar 16;94(3):651–715. Available from: http://link.springer.com/10.1007/s00204-020-02689-3
  7. Alkadi H. A Review on Free Radicals and Antioxidants. Infect Disord - Drug Targets [Internet]. 2020 Feb 14;20(1):16–26. Available from: http://www.eurekaselect.com/163296/article
  8. Liu Z, Ren Z, Zhang J, Chuang C-C, Kandaswamy E, Zhou T, et al. Role of ROS and Nutritional Antioxidants in Human Diseases. Front Physiol [Internet]. 2018 May 17;9(5):1–14. Available from: https://www.frontiersin.org/article/10.3389/fphys.2018.00477/full
  9. Azat Aziz M, Shehab Diab A, Abdulrazak Mohammed A. Antioxidant Categories and Mode of Action. In: Antioxidants [Internet]. IntechOpen; 2019. p. 1–20. Available from: https://www.intechopen.com/books/antioxidants/antioxidant-categories-and-mode-of-action
  10. Franzini L, Ardigò D, Valtueña S, Pellegrini N, Del Rio D, Bianchi MA, et al. Food selection based on high total antioxidant capacity improves endothelial function in a low cardiovascular risk population. Nutr Metab Cardiovasc Dis [Internet]. 2012 Jan;22(1):50–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939475310000980
  11. Serafini M, Peluso I. Functional Foods for Health:The Interrelated Antioxidant & Anti Inflammatory Role of Fruits, Vegetables, Herbs, Spices & Cocoa in Humans. Curr Pharm Des. 2016;22(44):6701–15
  12. Sripradha R, Sridhar MG, Maithilikarpagaselvi N. Antihyperlipidemic and antioxidant activities of the ethanolic extract of Garcinia cambogia on high fat diet-fed rats. J Complement Integr Med [Internet]. 2016 Jan 1;13(1):9–16. Available from: https://www.degruyter.com/document/doi/10.1515/jcim-2015-0020/html
  13. Kasote DM, Katyare SS, Hegde M V., Bae H. Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications. Int J Biol Sci [Internet]. 2015;11(8):982–91. Available from: http://www.ijbs.com/v11p0982.htm
  14. Alegbeleye OO. How Functional Is Moringa oleifera ? A Review of Its Nutritive, Medicinal, and Socioeconomic Potential. Food Nutr Bull [Internet]. 2018 Mar 28;39(1):149–70. Available from: http://journals.sagepub.com/doi/10.1177/0379572117749814
  15. Saini RK, Shetty NP, Prakash M, Giridhar P. Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. J Food Sci Technol [Internet]. 2014 Sep 30;51(9):2176–82. Available from: " http://dx.doi.org/10.1007/s13205-016-0526-3
  16. Nobossé P, Fombang EN, Mbofung CMF. Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Sci Nutr [Internet]. 2018 Nov;6(8):2188–98. Available from: https://onlinelibrary.wiley.com/doi/10.1002/fsn3.783
  17. Ganatra Tejas H, Joshi Umang H, Bhalodia Payal N, Desai Tusharbindu R, Tirgar Pravin R. A Panoramic View on Pharmacognostic, Pharmacological, Nutritional, Theurapeutic and Prophylactic Values of Moringa Oleifera Lam. Int Res J Pharm. 2012;3(6):1–7
  18. Vergara-Jimenez M, Almatrafi M, Fernandez M. Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease. Antioxidants [Internet]. 2017 Nov 16;6(4):91. Available from: http://www.mdpi.com/2076-3921/6/4/91
  19. Das N, Sikder K, Ghosh S, Fromenty B, Dey S. Moringa oleifera lam. leaf extract prevents early liver injury and restores antioxidant status in mice fed with high-fat diet. Indian J Exp Biol. 2012;50(6):404–12
  20. Fokwen VF, Tsafack HD, Touko BAH, Justin, Djopnang D, Afeanyi TA, et al. Nutrients Composition, Phenolic Content & Antioxidant Activity of Green & Yellow Moringa-Moringa Oleifera-Leaves. 2019;1(2018):46–56
  21. Escobar Cévoli R, Castro Espín C, Béraud V, Buckland G, Zamora Ros R. An Overview of Global Flavonoid Intake and its Food Sources. Flavonoids - From Biosynth to Hum Heal. 2017;371–91
  22. Moodley I. Acute toxicity of Moringa oleifera leaf powder in rats. J Med Plants Stud. 2017;5(5):180–5
  23. Santos EW, Oliveira DC, Hastreiter A, Silva GB, Beltran JS de O, Rogero MM, et al. Short-term high-fat diet affects macrophages inflammatory response, early signs of a long-term problem. Brazilian J Pharm Sci [Internet]. 2019;55:1–12. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-82502019000100548&tlng=en
  24. Biswas SK. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid Med Cell Longev [Internet]. 2016;2016:1–9. Available from: http://www.hindawi.com/journals/omcl/2016/5698931/
  25. Roy P, Tomassoni D, Traini E, Martinelli I, Micioni Di Bonaventura MV, Cifani C, et al. Natural Antioxidant Application on Fat Accumulation: Preclinical Evidence. Antioxidants [Internet]. 2021 May 27;10(6):858. Available from: https://www.mdpi.com/2076-3921/10/6/858
  26. Yida Z, Imam MU, Ismail M, Ismail N, Ideris A, Abdullah MA. High Fat Diet Induced Inflammation & Oxidative Stress are Attenuated by N-Acetylneuraminic Acid in Rats. J Biomed Sci [Internet]. 2015;22(1):1–10. Available from: http://dx.doi.org/10.1186/s12929-015-0211-6
  27. Emami SR, Jafari M, Haghshenas R, Ravasi A. Impact of eight weeks endurance training on biochemical parameters and obesity-induced oxidative stress in high fat diet-fed rats. J Exerc Nutr Biochem [Internet]. 2016 Mar 31;20(1):30–6. Available from: http://e-pan.org/journal/view.php?doi=10.20463/jenb.2016.03.20.1.5
  28. Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:11 pages
  29. Feng LJ, Yu CH, Ying KJ, Hua J, Dai XY. Hypolipidemic & Antioxidants Effects of Total Flavonoids of Perilla Frutescens Leaves in Hyperlipidemia Rats Induced by High Fat Diets. Food Res Int [Internet]. 2011;44(1):404–9. Available from: http://dx.doi.org/10.1016/j.foodres.2010.09.035
  30. Moussa Z, M.A. Judeh Z, A. Ahmed S. Nonenzymatic Exogenous and Endogenous Antioxidants. In: Free Radical Medicine and Biology [Internet]. IntechOpen; 2020. p. 1–22. Available from: https://www.intechopen.com/books/free-radical-medicine-and-biology/nonenzymatic-exogenous-and-endogenous-antioxidants
  31. Panche a. N, Diwan a. D, Chandra SR. Flavonoids: An overview. J Nutr Sci. 2016;5
  32. Mabrouki L, Rjeibi I, Taleb J, Zourgui L. Cardiac Ameliorative Effect of Moringa oleifera Leaf Extract in High-Fat Diet-Induced Obesity in Rat Model. Biomed Res Int [Internet]. 2020 Feb 28;2020:1–10. Available from: https://www.hindawi.com/journals/bmri/2020/6583603/
  33. Sinha M, Das DK, Datta S, Ghosh S, Dey S. Amelioration of ionizing radiation induced lipid peroxidation in mouse liver by Moringa oleifera Lam. leaf extract. Indian J Exp Biol. 2012;50(3):209–15
  34. Okiki P a, Osibote I a, Balogun O, Oyinloye BE, Idris O, Olufunke A, et al. Evaluation of Proximate , Minerals , Vitamins and Phytochemical Composition of Moringa oleifera Lam . Cultivated in Ado Ekiti , Nigeria. Adv Biol Res (Rennes). 2015;9(6):436–43
  35. Rodríguez-Pérez C, Quirantes-Piné R, Fernández-Gutiérrez A, Segura-Carretero A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind Crops Prod [Internet]. 2015 Apr;66:246–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0926669015000035
  36. Makita C, Chimuka L, Steenkamp P, Cukrowska E, Madala E. Comparative analyses of flavonoid content in Moringa oleifera and Moringa ovalifolia with the aid of UHPLC-qTOF-MS fingerprinting. South African J Bot [Internet]. 2016;105:116–22. Available from: http://dx.doi.org/10.1016/j.sajb.2015.12.007
  37. Pakade V, Cukrowska E, Chimuka L. Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. S Afr J Sci [Internet]. 2013;109(3/4):1–5. Available from: http://sajs.co.za/article/view/3866
  38. Chung APYS, Gurtu S, Chakravarthi S, Moorthy M, Palanisamy UD. Geraniin Protects High-Fat Diet-Induced Oxidative Stress in Sprague Dawley Rats. Front Nutr [Internet]. 2018 Mar 16;5(March):1–14. Available from: http://journal.frontiersin.org/article/10.3389/fnut.2018.00017/full
  39. Ighodaro OM, Akinloye O a. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med [Internet]. 2018;54(4):287–93. Available from: https://doi.org/10.1016/j.ajme.2017.09.001
  40. Coppin JP, Xu Y, Chen H, Pan MH, Ho CT, Juliani R, et al. Determination of Falvonoids by LC/MC & Anti Inflammatory in Moringa Oleifera. J Funct Foods. 2013;5(4):1892–9
  41. Nouman W, Anwar F, Gull T, Newton A, Rosa E, Domínguez-Perles R. Profilling of Polyphenolic, Nutrient & Antioxidants Potential of Germplasm’s Leaves from Seven Cultivars of Moringa Oleifera Lam. Ind Crops Prod [Internet]. 2016;83:166–76. Available from: http://dx.doi.org/10.1016/j.indcrop.2015.12.032
  42. Gibellini L, Bianchini E, De Biasi S, Nasi M, Cossarizza A, Pinti M. Natural Compounds Modulating Mitochondrial Functions. Evidence-Based Complement Altern Med [Internet]. 2015;2015:1–13. Available from: http://www.hindawi.com/journals/ecam/2015/527209/
  43. Kobori M, Takahashi Y, Akimoto Y, Sakurai M, Matsunaga I, Nishimuro H, et al. Chronic high intake of quercetin reduces oxidative stress and induces expression of the antioxidant enzymes in the liver and visceral adipose tissues in mice. J Funct Foods [Internet]. 2015;15:551–60. Available from: http://dx.doi.org/10.1016/j.jff.2015.04.006
  44. Das N, Sikder K, Bhattacharjee S, Majumdar SB, Ghosh S, Majumdar S, et al. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice. Food Funct [Internet]. 2013;4(6):889. Available from: http://xlink.rsc.org/?DOI=c3fo30241e
  45. Falowo AB, Mukumbo FE, Idamokoro EM, Lorenzo JM, Afolayan AJ, Muchenje V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res Int [Internet]. 2018 Apr;106(December 2017):317–34. Available from: https://doi.org/10.1016/j.foodres.2017.12.079
  46. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol Rev [Internet]. 2014 Apr;94(2):329–54. Available from: https://www.physiology.org/doi/10.1152/physrev.00040.2012
  47. Elvira-Torales LI, Navarro-González I, Rodrigo-García J, Seva J, García-Alonso J, Periago-Castón MJ. Consumption of Spinach and Tomato Modifies Lipid Metabolism, Reducing Hepatic Steatosis in Rats. Antioxidants [Internet]. 2020 Oct 24;9(11):1041. Available from: https://www.mdpi.com/2076-3921/9/11/1041
  48. Ko SH, Park JH, Kim SY, Lee SW, Chun SS, Park E. Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Prev Nutr Food Sci. 2014;19(1):19–26
  49. Kubant R, Poon a. N, Sánchez-Hernández D, Domenichiello a. F, Huot PSP, Pannia E, et al. A comparison of effects of lard and hydrogenated vegetable shortening on the development of high-fat diet-induced obesity in rats. Nutr Diabetes [Internet]. 2015 Dec 14;5(12):e188–e188. Available from: http://www.nature.com/articles/nutd201540
  50. Santos EW, de Oliveira DC, Hastreiter A, Beltran JSDO, Rogero MM, Fock RA, et al. High Fat Diet or Low Protein Diet Changes Peritoneal Macrophages Functional in Mice. Nutrire [Internet]. 2016;41(1):1–9. Available from: http://dx.doi.org/10.1186/s41110-016-0006-x
  51. Matias A, Estevam W, Coelho P, Haese D, Kobi J, Lima-Leopoldo A, et al. Differential Effects of High Sugar, High Lard or a Combination of Both on Nutritional, Hormonal and Cardiovascular Metabolic Profiles of Rodents. Nutrients [Internet]. 2018 Aug 11;10(8):1071. Available from: http://www.mdpi.com/2072-6643/10/8/1071
  52. Son H-K, Shin H-W, Jang E-S, Moon B-S, Lee C-H, Lee J-J. Comparison of Antiobesity Effects Between Gochujangs Produced Using Different Koji Products and Tabasco Hot Sauce in Rats Fed a High-Fat Diet. J Med Food [Internet]. 2018 Mar;21(3):233–43. Available from: http://www.liebertpub.com/doi/10.1089/jmf.2017.4007
  53. Bogoriani NW, Putra AAB, Heltyani WE. The Effect of Intake Duck Egg Yolk on Body Weight, Lipids Profile and Atherosclerosis Diseases in Male Wistar Rats. Int J Pharm Sci Res. 2019;10(2):926–32
  54. Viggiano E, Mollica MP, Lionetti L, Cavaliere G, Trinchese G, De Filippo C, et al. Effects of an High-Fat Diet Enriched in Lard or in Fish Oil on the Hypothalamic Amp-Activated Protein Kinase and Inflammatory Mediators. Front Cell Neurosci [Internet]. 2016 Jun 9;10(JUN):1–8. Available from: http://journal.frontiersin.org/Article/10.3389/fncel.2016.00150/abstract
  55. Bais S, Singh GS, Sharma R. Antiobesity and Hypolipidemic Activity of Moringa oleifera Leaves against High Fat Diet-Induced Obesity in Rats. Adv Biol [Internet]. 2014;2014:1–9 (9 pages). Available from: https://www.hindawi.com/journals/ab/2014/162914/
  56. Dhakad AK, Ikram M, Sharma S, Khan S, Pandey V V., Singh A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phyther Res [Internet]. 2019 Nov 27;33(11):2870–903. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ptr.6475
  57. Tan C, Wei H, Zhao X, Xu C, Peng J. Effects of Dietary Fibers with High Water Binding Capacity (WBC) and Swelling Capacity (SC) on Gastrointestinal Functionsn, Food Intake & Body Weight (BW) in Male Rats. Food Nutr Res [Internet]. 2017;61, 130811(1):1–8. Available from: http://dx.doi.org/10.1080/16546628.2017.1308118

Last update:

No citation recorded.

Last update: 2024-03-27 20:38:14

No citation recorded.