skip to main content

Identification of lactid acid bacteria from lemea's to lower blood sugar levels in mice's diabetes mellitus

Departemen of Nutrition, Poltekkes Kemenkes Bengkulu, Indonesia, Indonesia

Received: 21 Nov 2024; Revised: 7 Jan 2025; Accepted: 17 Feb 2025; Available online: 25 Feb 2025; Published: 30 Jun 2025.

Citation Format:
Abstract

Background: Diabetic is one of the main health problems in society throughout the world, so alternatives are needed to help prevent in creasing blood sugar levels. In this case, lactid acid bacteria (LAB) are able to inhibit the performance of the alpha glucosidase enzyme in breaking down carbohydrates into glucose, lowering blood sugar levels  so that lactic acid bacteria have potential in controlling hyperglycemia.

Objective: The purpose of this work is to assess the potential of four different strains of Lactobacillus that were isolated from lemea to reduce blood sugar levels in  mice.

Materials and Methods: Methods this study used a pre-test, post-test, control group design for its experimental methodology.

Results: The results of the study showed that giving pure culture of L. plantarum from Betung bamboo shoot lemea to mice with type 2 diabetes mellitus (type 2 DM) as treatment P2 was superior to giving acarbose, P1, P3, and P4 in reducing blood sugar levels with pancreatic damage 50% and lower than other treatments, while the pancreas of type 2 DM mice without therapy had the greatest damage score based on histopathological data.

Conclusion: Lactic acid bacteria from Lemea can help lower blood sugar levels and prevent the rate of damage to the pancreas of diabetic mice, with the best culture being L. plantarum from Lemea Betung bamboo shoots.

Fulltext
Keywords: Blood sugar levels; lactid acid bacteria; lemea; pancreatic
Funding: -

Article Metrics:

  1. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020 Jul;16(7):377–90
  2. Schleicher E, Gerdes C, Petersmann A, Müller-Wieland D, Müller UA, Freckmann G, et al. Definition, Classification and Diagnosis of Diabetes Mellitus. Exp Clin Endocrinol Diabetes. 2022 Sep;130(S 01):S1–8
  3. Amanat S, Ghahri S, Dianatinasab A, Fararouei M, Dianatinasab M. Exercise and Type 2 Diabetes. Adv Exp Med Biol. 2020;1228:91–105
  4. Asuaje Pfeifer M, Langehein H, Grupe K, Müller S, Seyda J, Liebmann M, et al. PyCreas: a Tool for Quantification of Localization and Distribution of Endocrine Cell Types in the Islets of Langerhans. Front Endocrinol (Lausanne). 2023;14(September):1–13
  5. Shih CK, Chen CM, Varga V, Shih LC, Chen PR, Lo SF, et al. White sweet potato ameliorates hyperglycemia and regenerates pancreatic islets in diabetic mice. Food Nutr Res. 2020;64:1–11
  6. Zhao C, Yang C, Wai STC, Zhang Y, P. Portillo M, Paoli P, et al. Regulation of Glucose Metabolism by Bioactive Phytochemicals for the Management of Type 2 Diabetes Mellitus. Crit Rev Food Sci Nutr. 2019;59(6):830–47
  7. Malaterre AS, Remize F, Poucheret P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res Int [Internet]. 2018;104:86–99. Available from: http://dx.doi.org/10.1016/j.foodres.2017.09.031
  8. Kanpiengjai A, Nuntikaew P, Wongsanittayarak J, Leangnim N, Khanongnuch C. Isolation of Efficient Xylooligoligosaccharides-Fermenting Probiotic Lactic Acid Bacteria from Ethnic Pickled Bamboo Shoot Products. Biology (Basel). 2022;11(5)
  9. Okfrianti Y, Darwis, Pravita Sari A. Identification of Lactic Acid Bacteria in Traditional Fermented Rejang Shoot “Lemea.” Atl Press ICIHC 2018. 2019;14(August)
  10. Behera P, Balaji S. Health Benefits of Fermented Bamboo Shoots: The Twenty-First Century Green Gold of Northeast India. Appl Biochem Biotechnol. 2021;193(6):1800–12
  11. Liana A, Purnomo P, Sumardi I, Daryono BS. Ethnobotany of Bamboo in Sangirese, North Celebes. Biosaintifika J Biol Biol Educ. 2017;9(1):81
  12. Sujarwo W. Bamboo Resources, Cultural Values, and Ex-situ Conservation in Bali, Indonesia. J Taxon Bot Plant, Sociol Ecol. 2018;17(1)
  13. Pashapoor A, Mashhadyrafie S, Mortazavi P. Ameliorative Effect of Myristica Fragrans (Nutmeg) Extract on Oxidative Status and Histology of Pancreas in Alloxan Induced Diabetic Rats. Folia Morphol. 2020;79(1):113–9
  14. Tandi J, Rizky M, Mariani R, Alan F. Uji Efek Ekstrak Etanol Daun Sukun (Artocarpus altilis (Parkinson Ex F.A.Zorn) Terhadap Penurunan Kadar Glukosa Darah, Kolesterol Total Dan Gambaran Histopatologi Pankreas Tikus Putih Jantan (Rattus norvegicus) Hiperkolesterolemia-Diabetes. J Sains dan Kesehat. 2018;1(8):384–96
  15. Yosmar R, Inanta NP, Sari YO. Studi Prospektif Adverse Drug Reactions (ADRS) Obat Hipoglikemik Oral Terhadap Pasien Diabetes Mellitus Tipe 2 di Suatu Rumah Sakit, Padang (A Prospective Study On Adverse Drug Reactions (Adrs) Of Oral Hypoglycemic Agents Among Type 2 Diabetes Patients in. J Sains Farm Klin [Internet]. 2018;5(3):169–75. Available from: http://jsfk.ffarmasi.unand.ac.id
  16. Prete R, Orco FD, Sabatini G, Montagano F, Battista N, Corsetti A. Improving the Antioxidant and Anti ‐ Inflammatory Activity of Fermented Milks with Exopolysaccharides ‐ Producing Lactiplantibacillus plantarum Strains. foods. 2024;13(1663)
  17. Guo R, Guo S, Gao X, Wang H, Hu W, Duan R, et al. Fermentation of Danggui Buxue Tang, an ancient Chinese herbal mixture, together with Lactobacillus plantarum enhances the anti-diabetic functions of herbal product. Chinese Med (United Kingdom) [Internet]. 2020;15(1):1–14. Available from: https://doi.org/10.1186/s13020-020-00379-x
  18. Beulens JWJ, Pinho MGM, Abreu TC, den Braver NR, Lam TM, Huss A, et al. Environmental Risk Factors of Type 2 Diabetes—an Exposome Approach. Diabetologia. 2022;65(2):263–74
  19. Melani H, Handayani WK. Analisis Tingkat Stres Terkait Kadar Gula Darah Pada Penderita Diabetes Melitus Tipe II. Indones J Public Heal Nutr [Internet]. 2021;1(3):101–13. Available from: http://journal.unnes.ac.id/sju/index.php/IJPHN
  20. Ruissen MM, Regeer H, Landstra CP, Schroijen M, Jazet I, Nijhoff MF, et al. Increased stress, weight gain and less exercise in relation to glycemic control in people with type 1 and type 2 diabetes during the COVID-19 pandemic. BMJ Open Diabetes Res Care. 2021;9(1):1–7
  21. Rooiqoh QF, Tamtomo DG, Cilmiaty R. The Relationship of Carbohydrate, Vitamin D, Zinc Consumption and Physical Activity with Fasting Blood Glucose Level in Type 2 Diabetes Mellitus Patients during COVID-19 Pandemic. Int J Nutr Sci. 2023;8(1):20–6
  22. Dang F, Jiang Y, Pan R, Zhou Y, Wu S, Wang R, et al. Administration of Lactobacillus Paracasei Ameliorates Type 2 Diabetes in Mice. Food Funct. 2018;9(7):3630–9
  23. Yan F, Li N, Shi J, Li H, Yue Y, Jiao W, et al. Lactobacillus Acidophilus Alleviates Type 2 Diabetes by Regulating Hepatic Glucose, Lipid Metabolism and Gut Microbiota in Mice. Food Funct. 2019;10(9):5804–15
  24. Youn HS, Kim JH, Lee JS, Yoon YY, Choi SJ, Lee JY, et al. Lactobacillus plantarum reduces low-grade inflammation and glucose levels in a mouse model of chronic stress and diabetes. Infect Immun. 2021;89(8)
  25. Hernawati, Kartini TA, Priyandoko D. Blood Sugar Conditions in Hyperglycemic Mice after Given the Biscuit from Banana Skin Type Kepok. J Phys Conf Ser. 2019;1280(2):8–13
  26. Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in Type 1 and Type 2 Diabetes Mellitus: Different Pathways to Failure. Nat Rev Endocrinol. 2020;16(7):349–62

Last update:

No citation recorded.

Last update: 2025-03-12 23:33:56

No citation recorded.