skip to main content

Relationship between skeletal muscle mass index and length of stay in stroke patient

Clinical Nutrition Department, Faculty of Medicine, Universitas Diponegoro, Semarang, Central Java, Indonesia, Indonesia

Received: 3 Jul 2025; Revised: 22 Nov 2025; Accepted: 31 Dec 2025; Available online: 4 Feb 2026; Published: 30 Jun 2026.

Citation Format:
Abstract

Background: Sarcopenia is a syndrome characterized by progressive condition and generalized loss of skeletal muscle mass and strength. It is associated with poor prognosis and increased length of stay in stroke patients. Skeletal Muscle Mass Index (SMI) is an important parameter for assessing skeletal muscle mass and the clinical outcomes of stroke patients.

Objective: to examine the relationship between SMI and length of stay in stroke patient.

Materials and Methods: Cross-sectional observational analytical research was conducted at Dr. Kariadi Semarang Hospital from June 2024 to March 2025 in hospitalized stroke patients aged >18 years. Body composition, including skeletal muscle mass, is measured using BIA. Data were analyzed by Independent t-test, Pearson Correlation and Double Linear Regression.

Results: The average length of stay among the 78 individuals (43 males and 35 females) was 11 days. The SMI levels were normal, indicating no sarcopenia.

Conclusion: Skeletal Muscle Mass Index (SMI) was significantly related (p<0.05) with length of stay in stroke patients; the higher the SMI score, the shorter the duration of hospital stay.

 

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Correlation between skeletal muscle mass index and length of stay in stroke patient
Subject
Type Other
  Download (110KB)    Indexing metadata
Keywords: Skeletal muscle mass index; length of stay; sarcopenia; stroke.

Article Metrics:

  1. Scherbakov, N.; von Haehling, S.; Anker, S.D.; Dirnagl, U.; Doehner W. Stroke Induced Sarcopenia: Muscle Wasting and Disability after Stroke. Int J Cardiol. 2013;170:89–94. https://doi.org/10.1016/j.ijcard.2013.10.031
  2. Kwakkel G et al. Impact of physical therapy for stroke patients: a multicenter randomized controlled trial. Stroke. 2008;39(6):1800–7
  3. Ovbiagele B NHM. Stroke epidemiology: advancing our understanding of disease mecha nism and therapy. Neurotherapeutics. 2011;8:319–29. https://doi.org/10.1007/s13311-011-0053-1
  4. Scherbakov, N.; Sandek, A.; Doehner W. Stroke-Related Sarcopenia: Specific Characteristics. J Am Med Dir Assoc. 2015;16:272–276. https://doi.org/10.1016/j.jamda.2014.12.007
  5. Ohyama, K.; Watanabe, M.; Nosaki, Y.; Hara, T.; Iwai, K.; Mokuno K. Correlation Between Skeletal Muscle Mass Deficit and Poor Functional Outcome in Patients with Acute Ischemic Stroke. J Stroke Cerebrovasc Dis. 2020;29:104623. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104623
  6. Matsushita, T.; Nishioka, S.; Taguchi, S.; Yamanouchi A. Sarcopenia as a Predictor of Activities of Daily Living Capability in Stroke Patients Undergoing Rehabilitation. Geriatr Gerontol Int. 2019;19:1124–1128. https://doi.org/10.1111/ggi.13780
  7. Siotto, M.; Germanotta, M.; Guerrini, A.; Pascali, S.; Cipollini, V.; Cortellini, L.; Ruco, E.; Khazrai, Y.M.; De Gara, L.; Aprile I. Relationship between Nutritional Status, Food Consumption and Sarcopenia in Post-Stroke Rehabilitation: Preliminary Data. Nutrients. 2022;14:4825. https://doi.org/10.3390/nu14224825
  8. Fielding RA, Vellas B, Evans WJ et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International Working Group for Sarcopenia. J Am Med Dir Assoc. 2011;12:249–256. https://doi.org/10.1016/j.jamda.2011.01.003
  9. Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer AA. et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing. 2019;48:16–31. https://doi.org/10.1093/ageing/afy169
  10. Bianchi L, Ferrucci L, Cherubini A, Maggio M B, dinelli S, Savino E et al. The predictive value of the EWGSOP definition of sarcopenia: results from the InCHIANTI Study. J Gerontol A Biol Sci Med Sci. 2016;71:259–64. https://doi.org/10.1093/gerona/glv129
  11. Su Y, Yuki M OM. Prevalence of stroke-related sarcopenia: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2020;29:105092. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105092
  12. Petermann-Rocha F, Balntzi V, Gray SR et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13:86–99. https://doi.org/10.1002/jcsm.12783
  13. Yoshimura Y, Bise T, Nagano F et al. Systemic inflammation in the recovery stage of stroke: its association with sarcopenia and poor functional rehabilitation outcomes. Prog Rehabil Med. 2018;3:20180011. https://doi.org/10.2490/prm.20180011
  14. Nozoe M, Kanai M, Kubo H, Yamamoto M, Shimada S MK. Prestroke sarcopenia and functional outcomes in elderly patients with acute stroke: A prospective cohort study. Nutrition. 2019;66:44–7. https://doi.org/10.1016/j.nut.2019.04.011
  15. Batsis JA, Mackenzie TA, Bartels SJ et al. Diagnostic accuracy of body mass index to identify obesity in older adults: NHANES 1999 2004. Int J Obes. 2016;40:761–7. https://doi.org/10.1038/ijo.2015.243
  16. Nakanishi, N.; Okura, K.; Okamura, M.; Nawata, K.; Shinohara, A.; Tanaka, K.; Katayama S. Measuring and Monitoring Skeletal Muscle Mass after Stroke: A Review of Current Methods and Clinical Applications. J Stroke Cerebrovasc Dis. 2021;30:105736. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105736
  17. Kim, S.; Won CW. Sex-Different Changes of Body Composition in Aging: A Systemic Review. Arch Gerontol Geriatr. 2022;102:104711. https://doi.org/10.1016/j.archger.2022.104711
  18. Yoshimura Y, Wakabayashi H, Bise T et al. Sarcopenia is associated with worse recovery of physical function and dysphagia and a lower rate of home discharge in Japanese hospitalized adults undergoing convalescent rehabilitation. Nutrition. 2019;61:111–8. https://doi.org/10.1016/j.nut.2018.11.005
  19. Yoshimura Y, Wakabayashi H, Bise T TM. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin Nutr. 2018;37(6):2022–8. https://doi.org/10.1016/j.clnu.2017.09.009
  20. Nozoe M, Kubo H, Yamamoto M et al. Muscle weakness is more strongly associated with functional outcomes in patients with stroke than sarcopenia or muscle wasting: an observational study. Aging Clin Exp Res. 2024;36:4. https://doi.org/10.1007/s40520-023-02672-9
  21. Scherbakov N DW. Sarcopenia in stroke-facts and numbers on muscle loss accounting for disability after stroke. J Cachex Sarcopen Musc. 2011;2:5–8. https://doi.org/10.1007/s13539-011-0024-8
  22. JM. G. Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle Nerve. 2005;31:535–551. https://doi.org/10.1002/mus.20284
  23. Abe T, Iwata K, Yoshimura Y et al. Low Muscle Mass is Associated with Walking Function in Patients with Acute Ischemic Stroke. J Stroke Cerebrovasc Dis. 2020;29(11):105259. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105259
  24. Abe T, Yoshimura Y, Imai R, Yoneoka Y, Tsubaki A SY. Impact of Phase Angle on Physical Function in Patients with Acute Stroke. J Stroke Cerebrovasc Dis. 2021;30(9):105941. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105941
  25. Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior JC., Pirlich M. et al. Bioelectrical Impedance Analysis—Part I: Review of Principles and Methods. Clin Nutr. 2004;23:1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004
  26. Abe, T.; Yoshimua, Y.; Imai, R.; Sato Y. A Combined Assessment Method of Phase Angle and Skeletal Muscle Index to Better Predict Functional Recovery after Acute Stroke. J Nutr Heal Aging. 2022;26:445–451. https://doi.org/10.1007/s12603-022-1777-9
  27. Guerrini A, Siotto M, Germanotta M, Schirru M, Pavan A, Cipollini V, et al. Body Cell Mass from Bioelectrical Impedance Analysis in Patients with Stroke Undergoing Rehabilitation. Appl Sci. 2023;13(6). https://doi.org/10.3390/app13063965
  28. Gonzalez MC HS. Bioelectrical imped ance analysis for diagnosing sarcopenia and cachexia: what are we really estimating? J Cachexia Sarcopenia Muscle. 2017;8:187–9. https://doi.org/10.1002/jcsm.12159
  29. Kim SJ, Yu EH, Min JH, Shin YI, Ko HY KS. Segmental bioelectrical impedance analysis of the body composition of affected and unaffected limbs after hemiparetic stroke. Am J Phys Med Rehabil. 2020;99:830–6. https://doi.org/10.1097/PHM.0000000000001434
  30. Mir MA, Al-Baradie RS, Alhussainawi MD. Pathophysiology of Strokes. In: Mir MA, editor. Recent Advances in Stroke Therapeutics. Nova Science Publishers, Inc.; 2014. p. 1–54
  31. Stroke Unit Trialists’ Collaboration. Organised inpatient (stroke unit) care for stroke [Internet]. London, UK: Cochrane Library. 2013 [cited 2025 Apr 21]. Available from: https://www.cochranelibrary.com/cdsr/%0A doi/10.1002/14651858.CD000197.pub3/full
  32. Hunnicutt JL GC. Skeletal muscle changes following stroke: a systematic review and comparison to healthy individuals. Top Stroke Rehabil. 2017;24:463–71. https://doi.org/10.1080/10749357.2017.1292720
  33. Jang A, Bae CH, Han SJ, Bae H. Association Between Length of Stay in the Intensive Care Unit and Sarcopenia Among Hemiplegic Stroke Patients. Ann Rehabil Med. 2021;45(1):49–56. https://doi.org/10.5535/arm.20111
  34. Akahoshi T, Yasuda M, Momii K, Kubota K SY, Kaku N et al. Sarcopenia is a predictive factor for pro longed intensive care unit stays in high-energy blunt trauma patients. Acute Med Surg. 2016;3:326–31. https://doi.org/10.1002/ams2.195
  35. Zuo X, Li X, Tang K, Zhao R, Wu M, Wang Y et al. Sarcopenia and cardiovascular diseases: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2023;14(3):1183–98. https://doi.org/10.1002/jcsm.13221
  36. Lee H, Lee IH, Heo J, Baik M, Park H, Lee HS et al. Impact of sarcopenia on functional outcomes among patients with mild acute ischemic stroke and transient ischemic attack: a retrospective study. Front Neurol. 2022;13:841945. https://doi.org/10.3389/fneur.2022.841945
  37. Luo L, Shen X, Fang S, Wan T, Liu P, Li P et al. Sarcopenia as a risk factor of progression-free survival in patients with metastases: a systematic review and meta-analysis. BMC Cancer. 2023;23(1):127. https://doi.org/10.1186/s12885-023-10582-2
  38. Chen LK, Woo J, Assantachai P et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300–7. https://doi.org/10.1016/j.jamda.2019.12.012
  39. Ogawa T, Suenaga M. Elderly Patients after Stroke Increase Skeletal Muscle Mass by Exercise Therapy in Rehabilitation Wards. J Stroke Cerebrovasc Dis [Internet]. 2021;30(9):105958. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105958
  40. Honma K, Honda Y, Nagase M, Nakao Y, Sota K, Naoki Sasanuma MI, et al. Pre-stroke patient characteristics that influence skeletal muscle quality: A cross-sectional study. Geriatr Gerontol Int. 2025;25:213–219. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105958
  41. Arsava EM, Gungor L, Sirin H, Sorgun MH, Aykac O, Batur Caglayan HZ, et al. Muscle mass as a modifier of stress response in acute ischemic stroke patients. Sci Rep. 2024;14(1):1–7. https://doi.org/10.1038/s41598-024-60829-6
  42. Kim KY, Jung S, Cho E Bin, Yang TW, Kim SJ, Kim H, et al. The impact of reduced skeletal muscle mass at stroke onset on 3-month functional outcomes in acute ischemic stroke patients. PLoS One [Internet]. 2025;20(1):1–13. https://doi.org/10.1371/journal.pone.0313368
  43. Azzollini V, Dalise S, Chisari C. How Does Stroke Affect Skeletal Muscle? State of the Art and Rehabilitation Perspective. Front Neurol. 2021;12:797559. https://doi.org/10.3389/fneur.2021.797559
  44. Mas MF, González J, Frontera WR. Stroke and sarcopenia. Curr Phys Med Rehabil Rep. 2020;8(4):452–460. https://doi.org/10.1007/s40141-020-00284-2
  45. Knight RL, H D, Saunders, Mead G. Maximal muscle power after stroke: a systematic review. Clin Pr. 2014;11(2):183–191. https://doi.org/10.2217/cpr.13.97
  46. Hajar N, Tatius B, Basuki R, Fatharani LF, Adhyatma GP, Kurniawan DA, et al. Lingkar Betis Berhubungan dengan Kebugaran Kardiorespirasi Pada Mahasiswa Kedokteran: Sebuah Studi Potong Lintang. In: Prosiding KONGRES XV & HUT KE – 52 PAAI 2023 - 4th LUMMENS: “The Role of Gut-Brain Axis in Indonesian Human Development.” Semarang: Universitas Muhammadiyah Semarang; 2023. p. 1–6
  47. Satya AD, Lusiana NT, Hastuti J. Hubungan Kekuatan Genggam Tangan dengan Massa Otot dan Indeks Massa Tubuh (IMT) pada Usia Dewasa di Daerah Istimewa Yogyakarta. Universitas Gadjah Mada; 2023
  48. Irfan Darfika Lubis DMP. Hubungan Antara Kekuatan Genggaman Tangan Dengan Indeks Massa Tubuh Pada Mahasiswa Fakultas Kedokteran Universitas Muhammadiyah Sumatera Utara. J Kedokt Anat. 2021;4(2). https://doi.org/10.30596/amj.v4i2.6514
  49. Pagotto V, Santos KF dos, Malaquias SG, Bachion MM SE. Calf circumference: clinical validation for evaluation of muscle mass in the elderly. Rev Bras Enferm. 2018;71:322e8. https://doi.org/10.1590/0034-7167-2017-0121
  50. Trussardi Fayh AP de SI. Comparison of revised EWGSOP2 criteria of sarcopenia in patients with cancer using different parameters of muscle mass. PLoS One. 2021;16:e0257446. https://doi.org/10.1371/journal.pone.0257446
  51. Grili PP da F, Marim MFR, Comério ACC, Petarli GB, da Cruz GF, Marques-Rocha JL, et al. Calf circumference as a predictor of skeletal muscle mass in postmenopausal women. Clin Nutr Open Sci. 2022;43:20–7. https://doi.org/10.1016/j.nutos.2022.04.002
  52. WHO. Physical status: the use and interpretation of anthropometry. Geneva; 1995
  53. RW. B. Muscle strength: clinical and prognostic value of hand-grip dynamometry. Curr Opin Clin Nutr Metab Care. 2015;18:465e70. https://doi.org/10.1097/MCO.0000000000000202
  54. Lopes AJ SNR. Hand grip strength in healthy young and older Brazilian adults. Kinesiology. 2017;49:208e16. https://doi.org/10.26582/k.49.2.5
  55. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. https://doi.org/10.1093/ageing/afy169
  56. Kawakami R, Miyachi M, Sawada SS, Torii S, Midorikawa T, Tanisawa K et al. Cut-offs for calf circumference as a screening tool for low muscle mass: WASEDA’S Health Study. Geriatr Gerontol Int. 2020;20:943e50. https://doi.org/10.1111/ggi.14025
  57. Kawakami R, Murakami H, Sanada K, Tanaka N, Sawada SS, Tabata I et al. Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatr Gerontol Int. 2014;15:969e76. https://doi.org/10.1111/ggi.12377
  58. Nishioka S, Yamanouchi A, Matsushita T, Nishioka E, Mori N, Taguchi S. Validity of calf circumference for estimating skeletal muscle mass for Asian patients after stroke. Nutrition. 2021;82:111028. https://doi.org/10.1016/j.nut.2020.111028
  59. Gajjar NP, Noronha T, Anumasa R, Mariarathinam P, Mariappan A. Relationship between Hand grip strength and Hand function in patients with Stroke: A Cross-Sectional Study. Clin Epidemiol Glob Heal. 2024;28:101657. https://doi.org/10.1016/j.cegh.2024.101657
  60. Ohtsubo T, Nozoe M, Kanai M, Kubo H, Ueno K, Morimoto Y. Association of Calf Circumference, Hand Grip Strength, and Physical Performance With Serious Adverse Events in Individuals With Subacute Stroke Hospitalized for Rehabilitation: An Observational Study. Arch Phys Med Rehabil. 2025;106(3):397–403. https://doi.org/10.1016/j.apmr.2024.09.015
  61. Setiati FA and S. Correlation between hand grip strength and nutritional status in elderly patients. In: IOP Publishing, editor. The 2nd Physics and Technologies in Medicine and Dentistry Symposium. Jakarta: IOP Conf. Series: Journal of Physics: Conf. Series 1073; 2018. p. 1–9. https://doi.org/10.1088/1742-6596/1073/4/042032
  62. Jacobs A Van, Coltman A, Gomez-Perez SL, Bienia B, Bienia JSS, Peterson SJ. The Prevalence of Low CT-Measured Skeletal Muscle Index and Handgrip Strength in a General Medical Population. Nutr Clin Pract. 2022;37:102–9. https://doi.org/10.1002/ncp.10660
  63. Li H, Zheng Y, Zhang Y, Zhang X LW, Y ZW and Z. Handgrip strength and body mass index exhibit good predictive value for sarcopenia in patients on peritoneal dialysis. Front Nutr. 2024;11:1470669. https://doi.org/10.3389/fnut.2024.1470669
  64. Siregar FPB, Irawati L, MYH E, Fasrini UU, Abdiana A, Wahid I. Relationship Between Body Mass Index and Handgrip Strength in Elderly at PSTW Sabai Nan Aluih. J Biomedika dan Kesehat. 2024;7(3):312–21. https://doi.org/10.18051/JBiomedKes.2024.v7.312-321

Last update:

No citation recorded.

Last update: 2026-02-08 02:38:34

No citation recorded.