skip to main content

The Effect of Red Dragon Fruit (hylocereus polyrhizus) Juice on Leptin Levels in Sprague Dawley Rats Using an Overweight Model

Departmen of Nutrition, Universitas Bumigora, Mataram, Nusa Tenggara Barat, Indonesia

Received: 6 Aug 2025; Revised: 10 Dec 2025; Accepted: 19 Jan 2026; Available online: 19 Jan 2026; Published: 30 Jun 2026.

Citation Format:
Abstract

Background: Obesity is strongly linked to elevate leptin levels and oxidative stress, both of which contribute to the development of various metabolic disorders. Leptin, a hormone that regulates metabolism and appetite, becomes less effective in obese individuals due to leptin resistance, thereby exacerbating metabolic dysfunction.

Objective: This study aims to evaluate the effect of red dragon fruit (hylocereus polyrhizus) juice on leptin levels in Sparague Dawley rats using an overweight model.

Method: This experimental study used a pre-post test control group design and involved six groups of rats (n=6 per group), including a normal group, a negative control group, a positive control group (orlistat), and three treatment groups receiving different doses of red dragon fruit juice (3.5 g, 7 g, and 10.5 g per 200 g body weight). The intervention was carried out for 14 days following a 14- day induction of obesity using a high-fat and high-carbohydrate diet. Leptin levels were measured before and after the intervention.  

Results: The results showed that administration of red dragon fruit juice significantly reduced leptin levels (p<0,001) in all treatment groups. The greatest reduction was observed in the group receiving the 10.5 g dose, with an average decrease of 75.03%, which was nearly equivalent to the orlistat group that reduced leptin levels by 79.93%.

Conclusion: Red dragon fruit juice has the potential to serve as a non-pharmacological agent in reducing leptin levels and oxidative stress under obesity conditions, with an effectiveness approaching that of orlistat.

Fulltext View|Download
Keywords: red dragon fruit juice, leptin, obesity, Sprague Dawley rats, spes

Article Metrics:

  1. Muhammad A, Marliyati SA, Fithriani D. Pengaruh senyawa bioaktif terhadap resistensi leptin pada obesitas. J Gizi dan Pangan. 2019
  2. Cahyaningrum D. Hubungan kadar leptin dengan obesitas. Jurnal Kesehatan. 2015
  3. Hardiningtiyas H, Sugiyarto, Nugroho RA. Aktivitas flavonoid sebagai antioksidan dalam ekstrak buah naga merah. Jurnal Biologi. 2014
  4. Zahra D, Azizahwati, Ramadhani R. Pengaruh ekstrak buah naga merah terhadap penanda stres oksidatif. Jurnal Gizi dan Fitokimia. 2019
  5. Imamura F, O’Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ. 2015;351:h3576
  6. Murphy MM, Barrett EC, Bresnahan KA, Barraj LM. 100% fruit juice and measures of glucose control and insulin sensitivity: a systematic review and meta-analysis of randomized controlled trials. J Acad Nutr Diet. 2017;117(6):951–64
  7. Kim JY, Kang MJ, Jeong SS, Kim DJ, Choe CM. Antioxidant capacity and cytotoxic effect of red dragon fruit peel and flesh. Korean J Food Sci Technol. 2017;49(2):122–9
  8. Gouws C, Joubert A, Muller C. Nutritional content of commercial and home-prepared fruit juices. South Afr J Clin Nutr. 2019;32(2):1–7
  9. Fadilah N, Amrina R, Nugraheni M, Pratiwi SA. Pengaruh jus buah naga merah terhadap kadar kolesterol pada orang dengan status gizi berlebih. J Gizi Indonesia. 2021
  10. Thadeus A, Yuliarti N, Andriani R. Pemberian ekstrak buah naga merah menurunkan kadar MDA pada tikus model hiperlipidemia. Jurnal Biomedik Eksperimental. 2019
  11. Mahendri I, Iskandar, Lestari T. Efektivitas buah naga merah dan metformin terhadap HOMA-IR dan MDA tikus DM tipe 2. Jurnal Ilmu Gizi Indonesia. 2021
  12. Widya R, Damarjati D, Astuti M. Kandungan antioksidan dan metabolit sekunder dalam buah naga merah. Jurnal Kimia Indonesia. 2013
  13. Susanti R, Panunggal B. Total fenol dan flavonoid dalam buah naga merah dan aktivitas antioksidan. Jurnal Pangan. 2015
  14. Rasyid HN, Wibowo T, Yulianti D. Flavonoid sebagai antioksidan endogen melalui aktivasi Nrf2. Jurnal Biokimia. 2012
  15. Septiana A, Ardiaria M. Peran vitamin C dalam buah naga merah sebagai antioksidan scavenging. Jurnal Sains dan Gizi. 2016
  16. Setyono H, Rahmawati Y, Lestari D. Efek kombinasi orlistat dan ekstrak biji kopi terhadap kadar trigliserida. Jurnal Farmasi Indonesia. 2014
  17. Rodriguez GR, Hernández RM, Uzcátegui EO. The effect of orlistat on serum leptin and triglyceride levels in obese patients. Obes Res Clin Pract. 2016;10(5):535–40
  18. Ioannides-Demos LL, Proietto J, McNeil JJ. Pharmacotherapy for obesity. Drugs. 2011;71(13):1771–800
  19. Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2020;21(11):643–51
  20. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2014;114(12):1752–61
  21. Esatbeyoglu T, Wagner AE, Schini-Kerth VB, Rimbach G. Betalain pigments: new players in an old game. Food Chem. 2015;187:65–72
  22. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40
  23. Amiot MJ, Riva C, Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev. 2016;17(7):573–86
  24. Padwal RS, Majumdar SR. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet. 2017;369(9555):71–7
  25. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, et al. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr. 2012;51(6):637–63
  26. Zhang Y, Ma X, Yang M, Liu H, Zhai Y. Dietary polyphenols modulate adipokine expression and improve insulin and leptin sensitivity in obese mice. Nutrients. 2021;13(2):437. https://doi.org/10.3390/nu13020437
  27. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2020;369(6509): 1331–5. https://doi.org/10.1126/science.aau6389
  28. Yusof NLM, Aziz MNM, Omar A, Mokhtar MH. Dragon fruit extract improves lipid profile and antioxidant status in rats with high-fat diet-induced obesity. Pharmaceutical Biology. 2020;58(1):1021–9. https://doi.org/10.1080/13880209.2020.1792381
  29. Chen J, Zhou L, Wang Y, Wang X. Effects of fruit and vegetable intervention on inflammatory biomarkers: A systematic review and meta-analysis. Food Funct. 2022;13(4):2206–15. https://doi.org/10.1039/D1FO04149E
  30. Kumar A, Das A, Roy P. Modulation of AMPK and JAK-STAT signaling pathways by dietary phytochemicals in obesity: Mechanistic insights and future directions. Mol Biol Rep. 2023;50:2317–29. https://doi.org/10.1007/s11033-023-08401-1

Last update:

No citation recorded.

Last update: 2026-01-19 10:53:55

No citation recorded.