skip to main content

Tepung ulat sagu (Rhyinchophorus ferrugineus) imunomodulator Nitric Oxide (NO) sirkulasi mencit terapi antimalaria standar

1Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Indonesia

2Ilmu Penyakit Dalam, RS. Kariadi Semarang, Fakultas Kedokteran, Universitas Diponegoro, Indonesia

3Parasitologi, Fakultas Kedokteran, Universitas Diponegoro, Indonesia

Received: 29 May 2018; Published: 1 Aug 2018.

Citation Format:
Abstract
Background : Sago worm flour (Rhyinchophorus ferrugineus)is a coconut beetle larvae that is processed into flour.This flour contains antioxidants as well as arginine, both of which play a role in modulating oxidative stress including NO involved in immunopathology of cerebral malaria.Objectives : To prove the immunomodulator role of sago worm flour in decreasing circulation  NO level at mice  who received standard antimalarial therapy  Dihydroartemisinin Piperaquine (DHP)Methods : This study was randomized control group post test only design by using 23 Swiss mice which divided into 5 group consist of : K(-) normal mice; K(+) inoculated woth Plasmodium berghei ANKA (PbA); X1 received DHP; X2 received sago worm flour; X3 received both of sago worm flour and DHP. All treatment groups X1,X2 and X3 were inoculated by PbA before treatmen were given. Serum circulation NO level was assessed by ELISA. statistical analysis used was One Way ANOVA followed by Bonferroni post hoc test.

Results : The mean  NO level in K(-), K(+), X1, X2, and X3 were 1.008 μmol/mL, K(+) 1.338 μmol/mL; while at treatment X1 1.143 μmol/mL, X2 1.410 μmol/mL, dan X3 0.886 μmol/mL. One way ANOVA showed that they were significantly different (p=0.001). Bonferroni post hoc test of X2 was  proportional to K(+) (p=1.000), whole had NO level lower than either K(+)(p=0.009) or X2 (p=0.002).

Conclusion : The immunomodulatory effects of sago worm flour (Rhyinchophorus ferrugineus) reduced circulating NO levels in standard antimalarial therapy recipients.
Fulltext View|Download
Keywords: Sago worm, Plasmodium berghei ANKA (PbA), NO

Article Metrics:

  1. World Health Organization. Media centre malaria. 2017. Available from: http://www.who.int/mediacentre/factsheets/fs094/en
  2. Pusat Data dan Informasi Kementerian Kesehatan RI. Info Datin Malaria. Malaria; 2016.1–7
  3. Kementrian Kesehatan RI. Pedoman tatalaksana malaria. Peraturan Menteri Kesehatan RI; 2013.1–62
  4. Sucipto CD. Manual lengkap malaria. Yogyakarta: Gosyen Publishing; 2015.125-129
  5. Zulkoni A. Parasitologi. Nuha Medika; Yogyakarta; 2011.79-87
  6. Estela M, Prameshinta F, Dharmana E, Kisdjamiatun RA. Efektivitas ekstrak daun sirsak (annonamuricata) dalam menurunkan kadar TNF-α dan meningkatkan kadar NO uji coba pada mencit swiss yang diinokulasi plasmodium berghei ANKA. J Kedokteran Brawijaya. 2016;29(1):39–42
  7. Upadhyay DN, Vyas RK, Sharma ML, Soni Y, Rajnee. Comparison in serum profile of peroxidants (MDA) and non enzymaticanti oxidants (vitamins E and C) among patients suffering from plasmodium falciparum and vivax malaria. J Postgrad Med Inst. 2011;25(2):96–100
  8. Cabrales P,Zanini GM, Barkho W, Frangos JA, Carvalho LJ. Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. J Neuroinflammation. 2011;8(1):66
  9. Punsawad C. Effect of malaria components on blood mononuclear cells involved in
  10. immune response. Asian Pacific Journal of Tropical Biomedicine. 2013;3(9);751-756
  11. Tjahjani NP, Kristina TR, Lestari ES. Efektivitas ekstra ketanol daun ungu (Gratophyllumpictum (L.) untuk menurunkan kadar TNF-α dan NO. Pharmaciana. 2016;6(2):191-200
  12. Osaro E, Muhammad K, Yakubu A, Zama I, Jiya NM, Van Dyke K, Nonye E: Serum nitric oxide levels among pre- school children of african descent with malaria in Sokoto, Nigeria. EC Paediatrics. 2017;5(4):97-107
  13. Bustaman S. Potensi ulat sagu dan prospek pemanfaatannya. J Litbang Pertanian. 2008;27(7):50-54
  14. Hastuty S. Pengolahan ulat sagu (Rhynchophorus ferrugineus) di Kelurahan Bosso Kecamatan Walenrang Utara Kabupaten Luwu. J Perspektif. 2016;01(1):12–9
  15. Tafor D. Pengaruh pemberian ekstrak etanol buah merah (Pandanusconoideus Lam) terhadap kadar Tumor Necrosis Factor Alpha (TNF-α) dan ekspresi Intercellular Adhesion Molecule-1 (ICAM-1) mencit swiss (Musmusculus L) yang diinfeksi Plasmodium berghei [Tesis]. Universitas Gadjah Mada; 2014
  16. Percario S, Moreira DR, Gomes BAQ, Ferreira MES,Goncalves ACM, Laurindo PSOCL, Vilhena TC, Dolabela MF. Green MD. Oxidative stress in malaria. International Journal of Molecular Sciences. 2012;13:16346-16372
  17. Weinberg JB, Lopansri BK, Mwaikambo E, Granger DL: Arginine, nitric oxide, carbon monoxide, and endothelial function in severe malaria. Current opinion in infectious diseases. 2008; 21 : 468-75
  18. Gomes BAQ, Silva LFD, Gomes ARQ, Moreira DR, Dolabela MF, Santos RS, Green MD, Carvalho EP, Percario S. N-acety cysteine and mushroom Agaricus sylvaticus supplementation decreased parasitemia and pulmonary oxidative stress in a mice model of malaria. 2015;14:202
  19. Hawkes M, Opoka RO, Namasopo S, Miller C, Thorpe KE, Lavery J V, et al. Inhaled nitric oxide for the adjunctive therapy of severe malaria: Protocol for a randomized controlled trial. J Trials. 2011;12(1):176
  20. Nahrevanian H. Immune effector mechanisms of the nitric oxide pathway in malaria: cytotoxicity versus cytoprotection. The Brazilian Journal of Infectious Diseases. 2006;10(4):283–292
  21. Sayuti K, Yenrina R. Antioksidan alami dan sintetik. Andalas University Press. Padang. 2015:1-5
  22. Fitri LE , Sarwono I , Rahmalia R. Kombinasi klorokuin dan N-Acetyl cysteine menurunkan ekspresi iNOS Tubulus proksimal ginjal mencit yang diinfeksi Plasmodium berghei. Jurnal Kedokteran Brawijaya. 2011;26(4):221-226
  23. Cramer JP, Nussler AK, Ehrhardt S, Burkhardt J, Otchwemah RN, Zanger P, Dietz E, Gellert S, Bienzle U, Mockenhaupt FP: Age-dependent effect of plasma nitric oxide on parasite density in Ghanaian children with severe malaria. Tropical medicine & international health : TM & IH. 2005;10:672-680
  24. Gramaglia I, Sobolewski P, Meays D, Contreras R, Nolan JP, Frangos JA, Intaglietta M, van der Heyde HC: Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nature medicine. 2006;12:1417-1422
  25. Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJM. Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J Infection Disease. 2011;203(10):1454–1463
  26. Elphinstone RE, Besla R, Shikatani EA, Lu Z, Hausladen A, Davies M, Robbins CS, Husain M, Stamler JS, Kain KC. S-Nitrosoglutathione reductase deficiency confers improved survival and neurological outcome in experimental cerebral malaria. Infection and immunity. 2017;85(9):1-39
  27. Yeo TW, Lampah DA, Tjitra E, Gitawati R, Darcy CJ, Jones C, Kenangalem E, McNeil YR, Granger DL, Lopansri BK, Weinberg JB, Price RN, Duffull SB, Celermajer DS, Anstey NM. Increased asymmetric dimethylarginine in severe falciparum malaria: association with impaired nitric oxide bioavailability and fatal outcome. PLoS pathogens. 2010;6(4):1-8
  28. Alkaitis MS, Wang H, Ikeda AK, Rowley CA, MacCormick IJ, Chertow JH, Billker O, Suffredini AF, Roberts DJ, Taylor TE, Seydel KB, Ackerman HC. Decreased rate of plasma arginine appearance in murine malaria may explain hypoargininemia in children with cerebral malaria. The Journal of infectious diseases. 2016;214:1840-1849
  29. Mulyanti, Dharmana E, Djamiatun K, Wijayahadi N. Effectiveness of tender coconut water (cocosnucifera l) against parasitemia index and hemoglobin levels in malaria infection. International Journal of Pharmaceutical Sciences and Research. 2016;7(9):3873-3876
  30. Eisenhut M. The evidence for a role of vasospasm in the pathogenesis of cerebral malaria. Malaria Journal. 2015;14:405
  31. Xu H, Feng Y, Chen G, Zhu X, Pang W, Du Y, Wang Q, Qi Z, Cao Y: L-arginine exacerbates experimental cerebral malaria by enhancing pro-inflammatory responses. The Tohoku journal of experimental medicine. 2015;236:21-31
  32. Jeney V, Ramos R, bergman ML, Bechmann I, Tischer J, Ferreira A, Marques VO, Janese CJ, Rebelo S, Cardoso S, Soares MP. Control of disease tolerance to malaria by Nitric Oxide and Carbon Monoxide. Cell Reports. 2014:8(1);126-136
  33. Shakir L, Hussain M, Javeed A, Ashraf M, Riaz A. Artemisinins and immune system. European Journal of Pharmacology. 2011;668:6-14

Last update:

  1. POTENSI SERANGGA SEBAGAI PANGAN FUNGSIONAL UNTUK PENINGKATAN KESEHATAN DAN KETAHANAN PANGAN DI INDONESIA: LITERATURE REVIEW

    Amalia Rani Setyawati, Ariel Magfirah. Journal of Nutrition College, 13 (4), 2024. doi: 10.14710/jnc.v13i4.42107
  2. The effect of providing multi nutrient functional biscuits on the nutritional status of malnourished toddlers

    Nadimin Nadimin, Hijra Asikin. Healthcare in Low-resource Settings, 2024. doi: 10.4081/hls.2024.13077
  3. The utilization of sago worm (Rhynchophorus ferrugineus) as a functional food of animal origin

    Adhi Susilo, Mutiara Ulfah. 4TH INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN MATERIALS SCIENCE AND ENGINEERING 2022, 3067 , 2024. doi: 10.1063/5.0202009

Last update: 2024-12-21 04:55:48

  1. Study of goat milk and goat milk yogurt to decrease parasitemia index on malaria-infected mice

    Sada M.. Food Research, 4 , 2020. doi: 10.26656/fr.2017.4(S3).S26