skip to main content

SUPPLY CHAIN 4.0 MATURITY, AGILITY, RESILIENCE AND ABSORPTIVE CAPACITY: AN EMPIRICAL STUDY IN INDONESIA

*Aisyah Awanda Prameswari  -  Management Department, BINUS Business School Master Program, Bina Nusantara University, Indonesia
Raissa Reithafy Riezky  -  Management Department, BINUS Business School Master Program, Bina Nusantara University, Indonesia
Darjat Sudrajat  -  Management Department, BINUS Business School Master Program, Bina Nusantara University, Indonesia

Citation Format:
Abstract

This study examines the effect of Absorptive Capacity on Supply Chain 4.0 Maturity (SC4.0) through the mediating role of Supply Chain Agility and Supply Chain Resilience. A quantitative research method was used by distributing an online survey, targeting supervisors and above in the supply chain field at companies that have adopted Industry 4.0 technologies. The study gathered responses from 94 participants; however, only 76 of them successfully completed the questionnaire. The data were analyzed using PLS-SEM. The research results show that Absorptive Capacity significantly influences Supply Chain 4.0 Maturity, with a path coefficient of 0,376 for Agility and 0,344 for Resilience, both categorized as moderate contributions. Agility and Resilience strongly impact Maturity, with coefficients of 0,413 and 0,414, highlighting their critical roles in digital transformation. Mediated effects through Agility and Resilience (0,298 each) emphasize the importance of Absorptive Capacity in achieving Supply Chain 4.0 Maturity. This study contributes to the understanding of factors affecting Supply Chain 4.0 Maturity and provides implications for organizations to adapt to the era of digitalization in Indonesia.

Fulltext View|Download
Keywords: Absorptive Capacity; Supply Chain; Agility; Resilience; Maturity

Article Metrics:

  1. Abourokbah, S. H., Mashat, R. M., & Salam, M. A. (2023). Role of Absorptive Capacity, Digital Capability, Agility, and Resilience in Supply Chain Innovation Performance. Sustainability, 15(4). doi: 10.3390/su15043636
  2. Alamsjah, F., & Yunus, E. N. (2022). Achieving Supply Chain 4.0 and the Importance of Agility, Ambidexterity, and Organizational Culture: A Case of Indonesia. Journal of Open Innovation: Technology, Market, and Complexity. doi: 10.3390/joitmc8020083
  3. Al-Hakimi, M. A., Saleh, M. H., & Borade, D. B. (2021). Entrepreneurial orientation and supply chain resilience of manufacturing SMEs in Yemen: the mediating effects of absorptive capacity and innovation. Heliyon, 7. doi: 10.1016/j.heliyon.2021.e08145
  4. Alicke, K., Hoberg, K., & Rachor, J. (2019, July). Supply Chain 4.0 innovations are becoming game changers. Retrieved from https://www.researchgate.net/publication/334508101_Supply_Chain_40_innovations_are_becoming_game_changers
  5. Aslam, H., Khan, A. Q., Rashid, K., & Rehman, S.-u. (2020). Achieving supply chain resilience: the role of supply chain ambidexterity and supply chain agility. Journal of Manufacturing Technology Management, 31(6), 1185-1204. doi: 10.1108/JMTM-07-2019-0263
  6. Bahrami, M., Shokouhyar, S., & Seifian, A. (2022). Big data analytics capability and supply chain performance: the mediating roles of supply chain resilience and innovation. Modern Supply Chain Research and Application, 4(1). doi: 10.1108/MSCRA-11-2021-0021
  7. Bititci, U. S., Garengo, P., Ates, A., & Nudurupati, S. S. (2015). Value of maturity models in performance measurement. International Journal of Production Research, 53(10), 3062-3085. doi: 10.1080/00207543.2014.970709
  8. Braunscheidel, M. J., & Suresh, N. C. (2008). The organizational antecedents of a firm’s supply chain agility for risk mitigation and response. Journal of Operations Management, 27(2), 119-140. doi: 10.1016/j.jom.2008.09.006
  9. Chauhan, C., & Singh, A. (2020). A Review of Industry 4.0 in Supply Chain Management Studies. Journal of Manufacturing Technology Management, 31(5), 863-886. doi: 10.1108/JMTM-04-2018-0105
  10. Chen, C. J. (2019). Developing a model for supply chain agility and innovativeness to enhance firms’ competitive advantage. Management Decision, 57(7), 1511-1534. doi: 10.1108/MD-12-2017-1236
  11. Choudhury, A., Behl, A., Sheorey, P. A., & Pal, A. (2021). Digital supply chain to unlock new agility: a TISM approach. Benchmarking: An International Journal, 28(6), 2075-2109. doi: 10.1108/BIJ-08-2020-0461
  12. da Silva, V. L., Kovaleski, J. L., & Pagani, R. N. (2019). Technology transfer in the supply chain oriented to industry 4.0: a literature review. Technology Analysis & Strategic Management, 31(5), 546-562. doi: 10.1080/09537325.2018.1524135
  13. Done, A. (2011, January). https://media.iese.edu/research/pdfs/DI-0898-E.pdf. Spain: IESE Business School - University of Navarra. Retrieved from
  14. Emerson, R. W. (2021). Convenience Sampling Revisited: Embracing Its Limitations Through Thoughtful Study Design. Journal of Visual Impairment & Blindness, 115(1). doi: 10.1177/0145482X20987707
  15. Flatten, T. C., Engelen, A., Zahra, S. A., & Brettel, M. (2011). A measure of absorptive capacity: Scale development and validation. European Management Journal, 29(2), 98-116. doi: 10.1016/j.emj.2010.11.002
  16. Frederico, G. F., Garza-Reyes, J. A., Anosike, A., & Kumar, V. (2020). Supply Chain 4.0: concepts, maturity and research agenda. Supply Chain Management, 25(2), 262-282. doi: 10.1108/SCM-09-2018-0339
  17. García-Reyes, H., Avilés-González, J., & Avilés-Sacoto, S. V. (2022). A Model to Become a Supply Chain 4.0 Based on a Digital Maturity Perspective. Procedia Computer Science, 200, 1058-1067. doi: 10.1016/j.procs.2022.01.305
  18. Goaill, M. M., & Al-Hakimi, M. A. (2021). Does absorptive capacity moderate the relationship between entrepreneurial orientation and supply chain resilience? Cogent Business & Management, 8(1). doi: 10.1080/23311975.2021.1962487
  19. Goaill, M. M., Perumal, S., & Noor, N. A. (2014). The Impact of Retailer’s Economic and Social Satisfaction on Its Commitment, and the Moderating Effect of Manufacturer Brands’ Strength. Asian Social Science, 10(8). doi: 10.5539/ass.v10n8p140
  20. Golgeci, I., & Kuivalainen, O. (2020). Does social capital matter for supply chain resilience? The role of absorptive capacity and marketing-supply chain management alignment. Industrial Marketing Management, 84, 63-74. doi: 10.1016/j.indmarman.2019.05.006
  21. GRUŽAUSKAS, V., & VILKAS, M. (2017). MANAGING CAPABILITIES FOR SUPPLY CHAIN RESILIENCE THROUGH IT INTEGRATION. Economics and Business, 31, 30-43. doi: 10.1515/eb-2017-0016
  22. Hahn, G. J. (2020). Industry 4.0: a supply chain innovation perspective. International Journal of Production Research, 58(5), 1425-1441. doi: 10.1080/00207543.2019.1641642
  23. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. doi: 10.1108/EBR-11-2018-0203
  24. Hamid, R. S., & Anwar, S. M. (2019). Structural Equation Modeling (SEM) Berbasis Varian: Konsep Dasar dan Aplikasi Program Smart PLS 3.2.8 dalam Riset Bisnis. Jakarta Pusat: PT Inkubator Penulis Indonesia
  25. Hazriyanto, Firdiyansyah, I., & Ibrahim, B. (2019). The Model of Job Satisfaction and Performance of University Lecturers in Batam City with Sem Smart PLS. International Journal of Recent Technology and Engineering (IJRTE), 8(2), 366-371
  26. Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing (Vol. 20). Leeds: Emerald Group Publishing Limited. doi: 10.1108/S1474-7979(2009)0000020014
  27. Hofmann, E., Sternberg, H., Chen, H., Pflaum, A., & Prockl, G. (2019). Supply chain management and Industry 4.0: conducting research in the digital age. International Journal of Physical Distribution & Logistics Management, 49(10), 945-955. doi: 10.1108/IJPDLM-11-2019-399
  28. Ivanov , D., Blackhurst, J., & Das, A. (2021). Supply chain resilience and its interplay with digital technologies: making innovations work in emergency situations. International Journal of Physical Distribution & Logistics Management, 51(2), 97-103. doi: 10.1108/IJPDLM-03-2021-409
  29. Ivanov, D., & Dolgui, A. (2021). OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications. International Journal of Production Economics, 232. doi: 10.1016/j.ijpe.2020.107921
  30. Jogiyanto. (2011). Konsep dan Aplikasi Sructural Equation Modeling (SEM) Berbasis Varian dalam Penelitian Bisnis. Yogyakarta: Unit Penerbit Percetakan STM YKPN
  31. Koc, E., Delibas, M. B., & Anadol, Y. (2022). Environmental Uncertainties and Competitive Advantage: A Sequential Mediation Model of Supply Chain Integration and Supply Chain Agility. Sustainability, 14. doi: 10.3390/su14148928
  32. Makris, D., Lee Hansen, Z. N., & Khan, O. (2019). Adapting to supply chain 4.0: an explorative study of multinational companies. Supply Chain Forum: An International Journal, 20(2), 116-131. doi: 10.1080/16258312.2019.1577114
  33. Muller, J. M., Buliga, O., & Voigt, K.-I. (2021). The role of absorptive capacity and innovation strategy in the design of industry 4.0 business Models - A comparison between SMEs and large enterprises. European Management Journal, 39(3), 333-343. doi: 10.1016/j.emj.2020.01.002
  34. Nakandala, D., Yang, R., Lau, H., & Weerabahu, S. (2023). Industry 4.0 technology capabilities, resilience and incremental innovation in Australian manufacturing firms: a serial mediation model. Supply Chain Management, 28(4), 760-772. doi: 10.1108/SCM-08-2022-0325
  35. Raj, A., Dwivedi, G., Sharma, A., Jabbour, A. L., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224. doi: 10.1016/j.ijpe.2019.107546
  36. Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332-344. doi: 10.1016/j.ijresmar.2009.08.001
  37. Reyes, H. G., & Giachetti, R. (2010). Using experts to develop a supply chain maturity model in Mexico. Supply Chain Management, 15(6), 415-424. doi: 10.1108/13598541011080400
  38. Sanchez, A. M., Manuela, P.-P., & Silvia, V.-O. (2019). Agile production, innovation and technological cooperation: Overlapping priorities of manufacturing firms. Baltic Journal of Management, 14(4), 597-615. doi: 10.1108/BJM-12-2018-0410
  39. Sanchez, A., & Leo, F. (2018). Supply chain agility: a mediator for absorptive capacity. Baltic Journal of Management, 255-278
  40. Sandy, M. M., Fahlevi, A., & Pentana, S. (2023). Pengaruh Knowledge Sharing, AbsortiveCapacity dan Organizational Learning Capability Terhadap Innovation Performance Pada PT. Perkebunan Nusantara IV (Persero) Medan. Jurnal Akutansi, Manajemen, dan Ilmu Manajemen (JASMINE), 3(3), 182-191. doi: 10.54209/jasmien.v3i03.381
  41. Siachou, E., Vrontis, D., & Trichina, E. (2021). Can traditional organizations be digitally transformed by themselves? The moderating role of absorptive capacity and strategic interdependence. Journal of Business Research, 124, 408-421. doi: 10.1016/j.jbusres.2020.11.011
  42. Tarigan, Z. J., Siagian, H., & Jie, F. (2021). Impact of Internal Integration, Supply Chain Partnership, Supply Chain Agility, and Supply Chain Resilience on Sustainable Advantage. Sustainability, 13(10). doi: https://www.mdpi.com/2071-1050/13/10/5460#
  43. Tiwari, S. (2021). Supply chain integration and Industry 4.0: a systematic literature review. Benchmarking: An International Journal, 28(3), 990-1030. doi: 10.1108/BIJ-08-2020-0428
  44. Whitehead, K. K., Zacharia, Z. G., & Prater, E. L. (2016). Absorptive capacity versus distributive capability: The asymmetry of knowledge transfer. International Journal of Operations & Production Management, 36(10), 1308-1332. doi: 10.1108/IJOPM-06-2015-0379
  45. Witjaksono, J. (2017). Analisis Nilai Tambah Rantai Pasok Jagung Pakan Ternak: Studi Kasus di Kabupaten Konawe Selatan Provinsi Sulawesi Tenggara. PANGAN, 13-22
  46. Wiyono, G. (2011). Merancang Penelitian Bisnis Dengan Alat Analisis SPSS 17.0 & SmartPLS 2.0. Yogyakarta: Unit Penerbit Percetakan STIM YKPN
  47. Wong, L.-W., Tan, G. W.-H., Ooi, K.-B., Lin, B., & Dwivedi, Y. K. (2022). Artificial intelligence-driven risk management for enhancing supply chain agility: A deep-learning-based dual-stage PLS-SEM-ANN analysis. International Journal of Production Research, 1-21. doi: 10.1080/00207543.2022.2063089
  48. Yuan, X.-M., & Xue, A. (2023). Supply Chain 4.0: New Generation of Supply Chain Management. Logistics, 7(9). doi: 10.3390/logistics7010009
  49. Zhao, N., Hong, J., & Lau, K. H. (2023). Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model. International Journal of Production Economics, 259. doi: 10.1016/j.ijpe.2023.108817
  50. Zouari, D., Viale, L., & Ruel, S. (2021). Does digitalising the supply chain contribute to its resilience? International Journal of Physical Distribution & Logistics Management, 51(2), 149-180. doi: 10.1108/IJPDLM-01-2020-0038

Last update:

No citation recorded.

Last update: 2025-04-12 05:19:09

No citation recorded.