skip to main content

Analisis Risiko Kesehatan Karyawan Terhadap Pajanan Kadmium (Cd) dan Eschericia coli di Industri

Jurusan Kesehatan Lingkungan Poltekkes Kemenkes RI Bandung, Jalan Babakan Loa No.10A, Gunung Batu, Cimahi Utara, Kota Cimahi 40514, Indonesia

Open Access Copyright 2023 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar Belakang: Karyawan berhak mendapatkan pelayanan yang menjamin kesehatan dan keselamatannya ketika mereka bekerja. Ketika menggunakan air bersih untuk higiene dan sanitasinya, pastikan air tersebut tidak berdampak secara lagsung maupun tidak langsung terhadap kesehatannya. Risiko kesehatan terhadap karyawan apabila mengkonsumsi air tersebut bisa diprediksi melalui analisis risiko kesehatan lingkungan. Tujuan: Mengetahui risiko non karsinogenik dan mikroba akibat pajanan Kadmium (Cd) dan E. coli dalam air bersih.

Metode: Penelitian ini adalah deskriptif dengan pendekatan analisis risiko kesehatan lingkungan. Sampel manusia adalah orang dewasa dengan menggunakan nilai default berat badan orang dewasa 55 Kg. Sampel lingkungan adalah air bersih di industri tekstil PT.X Kota Cimahi.

Hasil: Intake Kadmium (Cd) belum menunjukkan adanya bukti kanker dalam pajanan oral sehingga tidak dihitung dalam studi ini. Pajanan Cd dalam air bersih secara oral belum berisiko non karsinogenik (RQ = 0,20756). Peluang terinfeksi akibat pajanan E.coli dalam air bersih ( P = 4,34 x 10-5), dan peluang sakit (P = 1,572 x 10-2).

Simpulan: Keberadaan Cd dalam air bersih belum berisiko non karsinogenik (RQ < 1). Keberadaan E. coli dalam air bersih berpeluang menginfeksi > 1 per 100.000 karyawan, dan berpeluang menimbulkan sakit  > 1 per 100 karyawan industri PT.X Kota Cimahi dalam setahun.

 

ABSTRACT:

Title: Employee Health Risk Analysis of Cadmium (Cd) and Eschericia coli Exposure in Industry

Background: Employees have the right to get services that ensure their health and safety when they work. When using clean water for hygiene and sanitation,  ensure that the water does not  directly or indirectly impact on their health. The health risks to workers if they consume water can be predicted through an environmental health risk analysis. Objective: Knowing the carcinogenic, non-carcinogenic, and microbial risks due to exposure to Cadmium and E.coli in clean water.

Methods: This research was descriptive with environmental health risk analysis approach. Human samples were adults using the default value of the adult weight of 55 Kg. Environmental samples were clean water in the textile industry PT.X Cimahi City.

Result: Exposure to Cd in clean water orally did not pose a carcinogenic risk. Exposure to Cd in clean water orally had a non-carcinogenic risk (RQ = 0.20756). The probability of becoming infected due to exposure to E.coli in clean water (P = 4.34 x 10-5), and the probability of illness (P = 1.572 x 10-2)

Conclusion: The presence of Cd in clean water had no non-carcinogenic risk (RQ < 1). The presence of E.coli in clean water had the opportunity to infect > 1 per 100,000 employees, and has the opportunity to cause illness > 1 per 100 industrial employees of PT. X Cimahi City in a year.

Note: This article has supplementary file(s).

Fulltext View|Download |  CTA
Copyright Transfer Agreement
Subject
Type CTA
  Download (306KB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (1MB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (438KB)    Indexing metadata
Keywords: Karsinogenik; Kadmium (Cd); Beta poison

Article Metrics:

  1. Vallejo Toro PP, Vásquez Bedoya LF, Correa ID, Bernal Franco GR, Alcántara-Carrió J, Palacio Baena JA. Impact of terrestrial mining and intensive agriculture in pollution of estuarine surface sediments: Spatial distribution of trace metals in the Gulf of Urabá, Colombia. Mar Pollut Bull. 2016;111(1–2):311–20. https://doi.org/10.1016/j.marpolbul.2016.06.093
  2. Clemens S, Ma JF. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. 2016; https://doi.org/10.1146/annurev-arplant-043015-112301
  3. Cadmium ; CASRN 7440-43-9. Interated Risk Inf Syst Chem Assess Summ US EPA. 1987;1–11
  4. Ding, T, Shilin Du, Yahui Zhang , Wang H, Yu Zhang, Ying Cao, Jin Zhang dan LH. Hardness-Dependent Water Quality Criteria for Cadmium and An Ecological Risk Assessment of The Shaying River Basin. Ecotoxicol Environ Saf. 2020;198. https://doi.org/10.1016/j.ecoenv.2020.110666
  5. Halwani, D.A, M. Jurdi, Fatima K, A. Salem, M.A. Jaffa, N. Amacha, R.R. Habib dan HRD. Cadmium Health Risk Assessment and Anthropogenic Sources of Pollution in Mount-Lebanon Springs. Expo Helath. 2020;12:163–78. https://doi.org/10.1007/s12403-019-00301-3
  6. Ogidi OI, Enenebeaku UE, Okara E, Elumelu SA. Toxic Metal Profiles, Carcinogenic and Non-Carcinogenic Human Health Risk Assessment of Some Locally Produced Beverages in Nigeria. J Toxicol Risk Assess. 2021;7(1):1–8. https://doi.org/10.23937/2572-4061.1510039
  7. US EPA. Characterizing Risk and Hazard. Hum Heal Risk Assess Protoc [Internet]. 2005;1–15. Available from: http://www3.epa.gov/epawaste/hazard/tsd/td/combust/finalmact/ssra/05hhrap7.pdf
  8. Ichida A, Schaub S, Soller J, Nappier S, Ravenscroft J. Microbial risk assessment tools, methods, and approaches for water media. Microb Risk Anal. 2016;1(December):12. https://doi.org/10.1016/j.mran.2015.05.002
  9. USEPA D. Risk assessment guidance for superfund. Hum Heal Eval Man Part A. 1989;I(202)
  10. IRIS EPA. Manganese (CASRN 7439-96-5). Integr Risk Inf Syst. 1995;1–46
  11. Wen X, Feiyu C, Yixiang L, Hui Z, Fang Y, Duyi K, Zhihui J dan ZY. Microbial Indicators and Their Use for Monitoring Drinking Water Quality. Rev Sustain. 2020;12(6). https://doi.org/10.3390/su12062249
  12. Sinclair, R.G.; Jones, E.L.; Gerba CP. Viruses in recreational water-borne disease outbreaks. 2009. p. 1769–80. https://doi.org/10.1111/j.1365-2672.2009.04367.x
  13. Assessment USEPANC for E. Integrated Risk Information System (IRIS). 1989;1–11
  14. Suwatvitavakorn P, Myoung S.K, Kyoung W.K dan PC. Human health risk assessment of cadmium exposure through rice consumption in cadmium-contaminated areas of the Mae Tao sub-district, Tak, Thailand. Environ Geochemistry Helath. 2020;42:2331–44. https://doi.org/10.1007/s10653-019-00410-7
  15. Shahriar, S, M.M. Rahman dan RN. Geographical variation of cadmium in commercial rice brands in Bangladesh: Human health risk assessment. Sci Total Environ. 2020;716. https://doi.org/10.1016/j.scitotenv.2020.137049
  16. Sohail, M.I, M.Z. Rahman, M. Rizwan, B. Yousaf, M.A.Haq, a. Anayat dan AAW. Efficiency of various silicon rich amendments on growth and cadmium accumulation in field grown cereals and health risk assessment. Chemosphere. 2020;244. https://doi.org/10.1016/j.chemosphere.2019.125481
  17. El-Hassanin, Adel S. Magdy R.Samak, Gomaa N.Abdel-Rahman, Yahia H.Abu-Sree EMS. Risk assessment of human exposure to lead and cadmium in maize grains cultivated in soils irrigated either with low-quality water or freshwater. Toxicol Reports. 2020;7:10–5. https://doi.org/10.1016/j.toxrep.2019.11.018
  18. S. N. Pencemaran Tanah dan Air Tanah. Bandung: ITB Bandung; 2005
  19. Permenkes RI Standar dan Persyaratan Kesehatan Lingkungan Kerja Industri. Permenkes; 2016
  20. BSN. SNI 7387:2009. Batas Maksimum Cemaran Logam Berat dalam Pangan. Batas Maksimum Cemaran Logam Berat dalam Pangan [Internet]. 2009;1–29. Available from: https://sertifikasibbia.com/upload/logam_berat.pdf
  21. E.L. Owens, C, M.L. Angles, P.T. Cox, P.M. Byleved, N.J. Osborne dan MBR. Implementation of quantitative microbial risk assessment (QMRA) for public drinking water supplies. Syst Rev Water Res. 2020;174. https://doi.org/10.1016/j.watres.2020.115614
  22. Ahmed J, Wong LP, Chua YP, Channa N, Mahar RB, Yasmin A, et al. Quantitative microbial risk assessment of drinking water quality to predict the risk of waterborne diseases in primary-school children. Int J Environ Res Public Health. 2020;17(8):1–16. https://doi.org/10.3390/ijerph17082774
  23. Jamal, R, S. Mubarak, S.Q. Sahulka, J.A. Kori, A. Tajjamul, J.Ahmed, R.B. Mahar, M.S. Olsen, R.Goel dan J. Informing water distribution line rehabilitation through quantitative microbial risk assessment. Sci Total Environ. 2020;739. https://doi.org/10.1016/j.scitotenv.2020.140021
  24. Deepnarain N. Development of a Model to Predict Bulking in Full-scale Wastewater Treatment Plants, and the Impact of Bulking in the Receiving Environment. 2021;(April)
  25. Baharuddin A, Ichsan M. Microbial risk assessment (MRA) as a method of assessment for drinking water refll in pattinggaloang district of Makassar city. Indian J Forensic Med Toxicol. 2020;14(2):1793–8

Last update:

No citation recorded.

Last update: 2024-11-20 20:01:09

No citation recorded.