skip to main content

Penyisihan BOD, Minyak Dan Lemak Dalam Air Limbah Domestik Dengan Menggunakan Karbon Aktif Dari Kulit Pisang

1Program Magister Teknik Lingkungan, Fakultas Teknik, Universitas Diponegoro, Semarang, Indonesia

2Departemen Teknik Lingkungan, Fakultas Teknik, Universitas Diponegoro, Semarang, Indonesia

Open Access Copyright 2024 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: BOD, minyak dan lemak dalam air limbah domestik berbahaya bagi lingkungan. Polutan tersebut dapat dihilangkan dengan teknik adsorpsi menggunakan karbon aktif kulit pisang dengan efisiensi mencapai 70%. Tujuan penelitian yaitu mengkaji pengaruh dosis karbon aktif dan waktu kontak terhadap penyisihan BOD, minyak dan lemak, serta kinetika adsorpsinya, morfologi permukaan dan unsur kimia karbon aktif kulit pisang.

Metode: Penelitian ini menggunakan Rancangan Acak Lengkap Faktorial. Faktor pertama dosis karbon (1,5 g, 3 g, 4,5 g) dan faktor kedua waktu kontak (30, 60, dan 90 menit), dengan 2 ulangan. Percobaan adsorpsi menggunakan sistem batch dengan gelas beker. Parameter penelitian meliputi BOD yang dianalisis dengan titrasi iodometri (SNI-6989.72:2009), serta minyak dan lemak dengan metode gravimetri (SNI-6989.10:2011). Analisis data menggunakan analisis deskriptif yang meliputi efisiensi penyisihan, kinetika adsorpsi, morfologi permukaan dan elemen karbon aktif.   

Hasil: : Dosis karbon aktif dan waktu kontak mampu menyisihkan BOD, minyak dan lemak hingga 24% dan 97%. Kinetika adsorpsi pseudo-second-order dengan R2 0,98 dan 0,99 menggambarkan adsorpsi BOD, minyak dan lemak. Karbon aktif sebelum adsorpsi pori-porinya terbuka dan permukaannya bersih, sedangkan setelah adsorpsi pori-porinya tertutup, permukaan padat, dan bergelombang. Elemen karbon sebelum adsorpsi terdiri dari C, O, K sebesar 76,53%, 19,46%, 2,24%, dan setelah adsorpsi terdiri dari C 78,94% dan O 19,87%.

Simpulan: Dosis karbon dan waktu kontak berpengaruh terhadap penyisihan BOD, minyak dan lemak. Kinetika adsorpsi pseudo-second-order menggambarkan adsorpsi BOD, minyak dan lemak. Morfologi permukaan dan unsur karbon aktif sebelum dan sesudah adsorpsi berbeda.

 

Title: Removal of BOD, Oil and Grease in Domestic Wastewater Using Activated Carbon from Banana Peels

Background: BOD, oil and grease in domestic wastewater are harmful to the environment. These pollutants can be removed  with adsorption techniques by activated carbons using banana  peels with an efficiency  up to 70%. The aim of the study was to analyze the impact of activated carbon doses and the contact time on BOD, oil and grease removal, as well as the kinetics of adsorption, surface morphology and chemical elements  from banana peel activated carbon.

Method: This experiment used a factorial completely randomized design. The first factor was carbon dosage (1.5 g, 3 g, 4.5 g) and the second was contact time (30, 60, and 90 minutes), with 2 replications. The adsorption experiment used a batch system with a glass beaker. The research parameters included BOD analyzed by iodometric titration (SNI-6989.72:2009), and oil and grease by gravimetric method (SNI-6989.10:2011). Data analysis using descriptive analysis which includes removal efficiency, adsorption kinetics, surface morphology and activated carbon elements.

Result: The activated carbon dosage and contact time removed BOD, oil and grease up to 24% and 97%, respectively. Pseudo-second-order adsorption kinetics with R2 0.98 and 0.99 described the adsorption of BOD, oil and grease. Activated carbon before adsorption had open pores and a clean surface, while after adsorption the pores were closed, and the surface was solid and ridged. The carbon element before adsorption consists of C, O, and K at 76.53%, 19.46%, and 2.24%, and after adsorption consists of C at 78.94% and O at 19.87%.

Conclusion: Carbon dosage and contact time affected the removal of BOD, oil and grease. The pseudo-second-order adsorption kinetics described the adsorption of BOD, oil and grease. The surface morphologies and elements from activated carbon before and after adsorption  as different.

Note: This article has supplementary file(s).

Fulltext View|Download |  Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
 CTA
Copyright Transfer Agreement
Subject
Type CTA
  Download (318KB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (377KB)    Indexing metadata
Keywords: Adsorpsi; Air Limbah Domestik; Karbon Aktif; Kulit Pisang

Article Metrics:

  1. Badan Pusat Statistik. Laju Pertumbuhan Penduduk (Persen) 2020–2022. https://www.bps.go.Id/indicator/12/1976/1/laju–pertumbuhan-penduduk. 2022. Di akses pada 7 Oktober 2022, pukul 20.21 WIB
  2. Neles, Adami A, Ilham I, Wibowo D. Penerapan Geometri dalam Perencanaan Instalasi Pengolahan Air Limbah Domestik : Studi Kasus Perumahan Mutiara Sartika, Kota Kendari. Al-Ard: Jurnal Teknik Lingkungan 2020, 6(1): 1–9. https://doi.org/10.29080/alard.v6i1.1036
  3. Wijaya IMW, Soedjono ES. Physicochemical Characteristic of Municipal Wastewater in Tropical Area: Case Study of Surabaya City, Indonesia. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing; 2018. p. 1–6. https://doi.org/10.1088/1755-1315/135/1/012018
  4. Ferreira ARL, Sanches Fernandes LF, Cortes RMV, Pacheco FAL. Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Science of the Total Environment. 2017 Apr 1;583: 466–77. https://doi.org/10.1016/j.scitotenv.2017.01.106
  5. Wikaningrum T, Pratamadina E. Potensi Penggunaan Eco Enzyme sebagai Biokatalis dalam Penguraian Minyak dan Lemak pada Air Limbah Domestik. Jurnal Serambi Engineering 2022; 7(4): 3924 - 3932. https://doi.org/10.32672/jse.v7i4.4849
  6. Cheng H, Zhu Q, Xing Z. Adsorption of ammonia nitrogen in low temperature domestic wastewater by modification bentonite. J Clean Prod. 2019 Oct 1;233: 720–730. https://doi.org/10.1016/j.jclepro.2019.06.079
  7. Al-Jadabi N, Laouan M, Benbouzid M, Mabrouki J, El Hajjaji S. Coagulation-flocculation technique for domestic wastewater treatment in the city of Ain Aouda, Rabat, Morocco. In: E3S Web of Conferences. EDP Sciences; 2022. https://doi.org/10.1051/e3sconf/202233702003
  8. Das P, Quadir MA, Thaher MI, Alghasal GSHS, Aljabri HMSJ. Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer. International Journal of Environmental Science and Technology. 2019 Jul 1;16(7): 3355–3364. https://doi.org/10.1007/s13762-018-1867-8
  9. Yadav S, Yadav A, Bagotia N, Sharma AK, Kumar S. Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater - A review. Journal of Water Process Engineering, 2021; 42: 1 – 16. https://doi.org/10.1016/j.jwpe.2021.102148
  10. Anggriani UM, Hasan A, Purnamasari I, Kinetika Adsorpsi Karbon Aktif dalam Penurunan Konsentrasi Logam Tembaga (Cu) dan Timbal (Pb). Jurnal Kinetika 2021;12(02): 29–37
  11. Senthil Kumar P, Janet Joshiba G, Femina CC, Varshini P, Priyadharshini S, Arun Karthick MS, et al. A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalination Water Treat. 2019 Dec 1;172: 395–416. https://doi.org/10.5004/dwt.2019.24613
  12. Olaoye R, Afolayan O, Mustapha O, Adeleke H. The Efficacy of Banana Peel Activated Carbon in the Removal of Cyanide and Selected Metals from Cassava Processing Wastewater. Adv Res. 2018 Aug 16;16(1): 1–12. https://doi.org/10.9734/AIR/2018/43070
  13. Hatina S, Winoto E, Febriana I, Antoni. Pengaruh Karbon Aktif Kulit Pisang Putri pada Limbah Ammonia. Jurnal Redoks. 2021;6(1):7–16. https://doi.org/10.31851/redoks.v6i1.5244
  14. Pradana AA, Pujion, Yulianto B, Ruhmawati T. Perbedaan Waktu Kontak Karbon Aktif Terhadap Penurunan Kadar Amonia Pada Limbah Cair Domestik. Jurnal Riset Kesehatan. 2019;11(1):215–20. https://doi.org/10.34011/juriskesbdg.v11i1.734
  15. Baloch MYJ, Mangi SH. Treatment of Synthetic Greywater by Using Banana, Orange and Sapodilla Peels as a Low Cost Activated Carbon. J Mater Environ Sci. 2019;10(10):966–86
  16. Vigiak O, Grizzetti B, Udias-Moinelo A, Zanni M, Dorati C, Bouraoui F, et al. Predicting biochemical oxygen demand in European freshwater bodies. Science of the Total Environment. 2019 May 20;666:1089–105. https://doi.org/10.1016/j.scitotenv.2019.02.252
  17. Nieuwenhuis E, Langeveld J, Clemens F. The relationship between fat, oil and grease (FOG) deposits in building drainage systems and FOG disposal patterns. Water Science and Technology. 2018 May 1;77(10):2388–96. https://doi.org/10.2166/wst.2018.173
  18. Perrich JR. Activated Carbon Adsorption For Wastewater Treatment. CRC Press; 2018. 55 p. https://doi.org/10.1201/9781351069465
  19. Wirosoedarmo R, Haji ATS, Hidayati EA. Pengaruh konsentrasi dan waktu kontak pada pengolahan limbah domestik menggunakan karbon aktif tongkol jagung untuk menurunkan BOD dan COD. Jurnal Sumberdaya Alam dan Lingkungan. 2018;3(2):31–8
  20. Sanjaya SA, Agustine PR. Studi Kinetika Adsorpsi Pb Menggunakan Arang Aktif Dari Kulit Pisang. Konversi. 2015 Apr;4(1):17–24. https://doi.org/10.20527/k.v4i1.261
  21. Nayl AEA, Elkhashab RA, El Malah T, Yakout SM, El-Khateeb MA, Ali MMS, et al. Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste. Environmental Science and Pollution Research. 2017 Oct 1;24(28):22284–93. https://doi.org/10.1007/s11356-017-9878-4
  22. Del Angel E, Pantoja MA, López R, Cruz AE. Treatment of domestic wastewater using activated carbon prepared from sugarcane bagasse. Tecnologia y Ciencias del Agua. 2022 Jan 1;13(1). https://doi.org/10.24850/j-tyca-2022-01-04
  23. Younis SA, Moustafa YM. Synthesis of urea-modified MnFe2O4 for aromatic micro-pollutants adsorption from wastewater: Mechanism and modeling. Clean Technol Environ Policy. 2017 Mar 1;19(2):527–40. https://doi.org/10.1007/s10098-016-1244-6
  24. Santos TM, de Jesus FA, da Silva GF, Pontes LAM. Synthesis of activated carbon from oleifera moringa for removal of oils and greases from the produced water. Environ Nanotechnol Monit Manag. 2020 Dec 1;14. https://doi.org/10.1016/j.enmm.2020.100357
  25. Shukla SK, Al Mushaiqri NRS, Al Subhi HM, Yoo K, Al Sadeq H. Low-cost activated carbon production from organic waste and its utilization for wastewater treatment. Appl Water Sci. 2020 Feb 1;10(2). https://doi.org/10.1007/s13201-020-1145-z
  26. Blachnio M, Derylo-Marczewska A, Charmas B, Zienkiewicz-Strzalka M, Bogatyrov V, Galaburda M. Activated Carbon from Agricultural Wastes for Adsorption of Organic Pollutants. Molecules. 2020 Nov 1;25(21). https://doi.org/10.3390/molecules25215105
  27. Mopoung S, Moonsri P, Palas W, Khumpai S. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution. Scientific World Journal. 2015. https://doi.org/10.1155/2015/415961

Last update:

No citation recorded.

Last update: 2024-11-19 16:25:32

No citation recorded.