skip to main content

Efek Arus Listrik Direct Curent (DC) sebagai Daya Kejut Terhadap Larva Aedes aegypti

1Program Magister Kesehatan Lingkungan, Fakultas Kesehatan Masyarakat, Universitas Diponegoro, Semarang, Indonesia

2Fakultas Kesehatan Masyarakat, Universitas Diponegoro, Jl. Prof. Jacub Rais Tembalang Semarang, Indonesia

Open Access Copyright 2024 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Pengendalian DBD masih berfokus pada vektornya yang bertujuan untuk menurunkan kelimpahan nyamuk Aedes aegypti. Pengendalian DBD secara fisik dapat digunakan sebagai alternatif dalam pengendalian Ae. aegypti karena hal ini melengkapi pengendalian vektor terpadu. Penelitian ini bertujuan untuk menguji prototipe alat yang berbasis kejutan listrik yang aman digunakan dan menggunakan arus direct current yang diaplikasikan pada air berisi larva Ae. aegypti untuk mengetahui pengaruhnya terhadap larva Ae. aegypti.

Metode: Penelitian menggunakan larva Ae. aegypti instar III dan IV. Larva dipaparkan pada arus listrik DC dengan lima voltase uji yaitu 3, 4, 5, 6 dan 7 volt. Pengulangan dilakukan sebanyak 10 kali dan tiap uji digunakan 25 larva. Pengamatan dilakukan pada menit 15, 30, 1 jam, 2 jam, 3 jam dan 4 jam setelah perlakuan.

Hasil: Perbedaan nilai voltase arus listrik direct current terhadap kematian larva Ae. aegypti berpengaruh signifikan (p< 0,05). Hubungan antara voltase dan kematian larva bersifat positif yang berarti semakin besar voltase maka semakin banyak kematian larva Ae. aegypti. Nilai probit perlakuan voltase input 7 volt merupakan nilai yang paling cepat dalam mematikan larva yaitu nilai LT50 yaitu 1,81 jam pada volume air uji 5 liter dan LT50: 0,54 jam pada volume uji 10 liter.

Simpulan: Nilai voltase berpengaruh signifikan terhadap kematian larva Ae. aegypti. Nilai probit perlakuan voltase input 7 volt merupakan nilai yang paling cepat dalam mematikan larva Ae. aegypti.

 

ABSTRACT

Title: Effect of Direct Curent Electricity as a Shock Force on Aedes aegypti Larvae

Background: DHF control is still focused on the vector which aims to reduce the abundance of Aedes aegypti. Physical DHF control can be used as an alternative in controlling Ae. aegypti as this complements integrated vector management. The aim of this study is to test a prototype device based on electric shock that was safe to use and using direct current electricity that can be applied to water containing Ae. aegypti  larvae to determine the effect on the mortality of Ae. aegypti.

Method: This study using Ae. aegypti instars III and IV. The larvae were exposed to direct current electricity with five test voltages namely 3, 4, 5, 6 and 7 volts. Repetition was carried out 10 times with each test requiring as many as 25 larvae. Observations were made at 15, 30, 1 hour, 2 hours, 3 hours and 4 hours after treatment.

Result: The difference in the value of direct current electricity voltage to the mortality of Ae. aegypti larvae has a significant  different( p<0.05). The relationship between voltage and larval mortality is positive, which means that the greater the voltage, the more Ae. aegypti larvae death. The probit value for the 7-volt input voltage treatment was the  fastest in killing the larvae, namely the LT50 value of 1.81 hours at 5 liters of water volume and LT50: 0.54 hours at 10 liters of water volume.

Conclusion: The voltage value has a significant effect on the mortality of Ae. aegypti larvae. The probit value of the 3-volt input voltage treatment was the slowest in killing larvae and the 7-volt input voltage was the fastest in killing Ae. aegypti larvae

Note: This article has supplementary file(s).

Fulltext View|Download |  ES
Etichal Statement
Subject
Type ES
  Download (280KB)    Indexing metadata
 CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (211KB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (1MB)    Indexing metadata
Keywords: Aedes aegypti; Direct Current; Lethal Time

Article Metrics:

  1. Kementerian Kesehatan Republik Indonesia. Data DBD di Indonesia. Ditjen PPM&PL. Jakarta; 2022
  2. Badan Pusat Statistik DKI Jakarta. Statistik Indonesia tahun 2020. BPS. Jakarta; 2021
  3. Matthews BJ. Aedes aegypti. Trends Genetic. 2019;35(6):470-471. https://doi.org/10.1016/j.tig.2019.03.005
  4. Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-Ng L, Martins AJ, Juntarajumnong W, Corbel V, Gouagna C, David JP, Logan JG, Orsborne J, Marois E, Devine GJ, Vontas J. Alternative strategies for mosquito-borne arbovirus control. PLoS Neglected Tropical Disease. 2019:13(1);e0006822. https://doi.org/10.1371/journal.pntd.0006822
  5. Wang WH, Urbina AN, Chang MR, Assavalapsakul W, Lu PL, Chen YH, Wang SF. Dengue hemorrhagic fever - A systemic literature review of current perspectives on pathogenesis, prevention and control. Journal of Microbiology, Immunology and Infection. 2020;53(6):963-978. https://doi.org/10.1016/j.jmii.2020.03.007
  6. Madushanka A, Verma N, Freindorf M, Kraka E. Papaya leaf extracts as potential dengue treatment: An in-silico study. International journal of molecular sciences. 2022;23(20):12310. https://doi.org/10.3390/ijms232012310
  7. World Health Organization. Dengue Situation Updates 2021. WHO Regional Office for the Western Pacific. Geneva; 2022
  8. Targanski SK, Sousa JR, de Pádua GM, de Sousa JM, Vieira LC, Soares MA. Larvicidal activity of substituted chalcones against Aedes aegypti (Diptera: Culicidae) and non-target organisms. Pest Management Science. 2021;77(1):325-334. https://doi.org/10.1002/ps.6021
  9. Garjito TA, Hidajat MC, Kinansi RR, Setyaningsih R, Anggraeni YM, Mujiyanto, Trapsilowati W, Jastal, Ristiyanto, Satoto TBT, Gavotte L, Manguin S, Frutos R. Stegomyia indices and risk of dengue transmission: A lack of correlation. Frontiers in Public Health. 2020;8:328. https://doi.org/10.3389/fpubh.2020.00328
  10. Kementerian Kesehatan. Strategi nasional penanggulangan Dengue 2021–2025. Ditjen PPM&PL. Jakarta; 2021
  11. Lima EP, Goulart MO, Rolim Neto ML. Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti. BMC Public Health. 2015;15:858. https://doi.org/10.1186/s12889-015-2199-y
  12. Matsuda Y, Nonomura T, Toyoda H. Physical methods for electrical trap-and-kill fly traps using electrified insulated conductors. Insects. 2022; 13(3):253. https://doi.org/10.3390/insects13030253
  13. Hakim L, Pujiastuti E, Kusnandar AJ. Kemampuan direct current yang diubah menjadi alternating current dalam menghambat perkembangan telur nyamuk Aedes aegypti. Jurnal Biotek Medisiana Indonesia, 2012:1(2);55-62
  14. Luan K, McCord MG, West AJ, Cave G, Travanty NV, Apperson CS, Roe RM. Mosquito blood feeding prevention using an extra-low dc voltage charged cloth. Insects. 2023;14(5):405. https://doi.org/10.3390/insects14050405
  15. World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. 1st ed. Geneva; 2020
  16. Steinwascher K. Competition among Aedes aegypti larvae. PLoS One. 2018;13(11):e0202455. https://doi.org/10.1371/journal.pone.0202455
  17. Mohamad EA, Elfky AA, El-Gebaly RH, Afify A. Study the change in the mosquito larvae (Culex pipiens) in water treated with short pulses electric filed. Electromagnetic Biology and Medicine. 2022;41(1):80-92. https://doi.org/10.1080/15368378.2021.2012787
  18. Matsuda Y, Shimizu K, Sonoda T, Takikawa Y. Use of electric discharge for simultaneous control of weeds and houseflies emerging from soil. Insects. 2020:11(12);861. https://doi.org/10.3390/insects11120861
  19. Koraag ME. Lethal time ekstrak bunga kecombrang (Etlingera elatior) terhadap larva Aedes aegypti. Prosiding Seminar Nasional Biologi FMIPA UNM. 2020;300-309
  20. Fatimah G, Rahayu R, Hasmiwati. Lethal concentration (LC50, 90, and 98) and lethal time (LT50, 90, and 98) at various temephos concentrations of Aedes aegypti larvae. International Journal of Mosquito Research. 2020:7(1);1-3
  21. Service M. Medical Entomology for Students. 4th ed. Cambridge;2020
  22. Julianto B, Supriyadi. Pengaruh suhu terhadap hambatan rangkaian listrik. Jurnal Fisika. 2013:3(2);102-104
  23. Aziz A, Udaibah W, Hidayah M. Pengaruh pH dan tegangan listrik dalam elektrolisis limbah padat baja (Slag Eaf) sebagai upaya mereduksi kandungan logam Fe pada limbah padat industri galvanis. Walisongo journal of Chemistry. 2018:1(2);52-59. https://doi.org/10.21580/wjc.v2i2.3102
  24. Chathuranga WGD, Weeraratne TC, Abeysundara SP, Karunaratne SHPP, de Silva WAPP. Breeding site selection and co-existing patterns of tropical mosquitoes. Med Vet Entomol. 2023;37(3):550-561. https://doi.org/10.1111/mve.12656
  25. Dalpadado R, Amarasinghe D, Gunathilaka N. Water quality characteristics of breeding habitats in relation to the density of Aedes aegypti and Aedes albopictus in domestic settings in Gampaha district of Sri Lanka. Acta Tropica. 2022;229:106339. https://doi.org/10.1016/j.actatropica.2022.106339
  26. Chatterjee, S., Chakraborty, A., & Sinha, S. K. (2015). Spatial distribution & physicochemical characterization of the breeding habitats of Aedes aegypti in & around Kolkata, West Bengal, India. The Indian journal of medical research, 142 Suppl(Suppl 1), S79–S86. https://doi.org/10.4103/0971-5916.176631
  27. Garcia-Sánchez DC, Pinilla GA, Quintero J. Ecological characterization of Aedes aegypti larval habitats (Diptera: Culicidae) in artificial water containers in Girardot, Colombia. Journal of Vector Ecology. 2017;42(2):289-297. https://doi.org/10.1111/jvec.12269
  28. Takikawa Y, Takami T, Kakutani K. Body water-mediated conductivity actualizes the insect-control functions of electric fields in houseflies. Insects. 2020:11(9);561. https://doi.org/10.3390/insects11090561
  29. He J, Cao Z, Yang J, Zhao HY, Pan WD. Effects of static electric fields on growth and development of wheat aphid Sitobion aveanae (Hemiptera: Aphididae) through multiple generations. Electromagnetic biology and medicine. 2016:35(1);1–7. https://doi.org/10.3109/15368378.2014.954288
  30. Santos VSV, Pereira BB. Low toxicity and high efficacy in use of novel approaches to control Aedes aegypti. Journal of Toxicology Environmental Health. 2020;23(6):243-254. https://doi.org/10.1080/10937404.2020.1776655
  31. Santos VSV, Silva CE, Oliveira CM, de Morais CR, Limongi JE, Pereira BB. Evaluation of toxicity and environmental safety in use of spinosad to rationalize control strategies against Aedes aegypti. Chemosphere. 2019;226:166-172. https://doi.org/10.1016/j.chemosphere.2019.03.129

Last update:

No citation recorded.

Last update: 2025-01-21 14:29:56

No citation recorded.