skip to main content

Implementasi Metode Support Vector Machine (SVM) dan t-Distributed Stochastic Neighbor Embedding (t-SNE) untuk Klasifikasi Depresi

Departemen Informatika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia

Received: 8 Nov 2023; Revised: 29 Nov 2023; Accepted: 30 Nov 2023; Available online: 30 Nov 2023; Published: 30 Nov 2023.
Editor(s): Prajanto Adi
Open Access Copyright (c) 2023 The authors. Published by Department of Informatics, Universitas Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Depresi merupakan salah satu gangguan kesehatan mental. Sekitar 300 juta jiwa atau 3,76% populasi di dunia dari segala usia dan komunitas menderita depresi. WHO memprediksi bahwa depresi akan menjadi penyebab kematian paling berdampak dalam 15 tahun ke depan. Penelitian terdahulu yang melakukan klasifikasi terhadap depresi untuk instrumen Depression Anxiety Stress Scales (DASS-42) masih sangat sedikit. Penelitian ini mengidentifikasi seseorang memiliki kemungkinan depresi, melalui proses pelatihan model klasifikasi menggunakan metode Support Vector Machine dan t-Distributed Stochastic Neighbor Embedding pada set data DASS-42. Set data DASS-42 terdiri dari 39.776 data dan dapat digunakan untuk mengklasifikasi 3 fenomena yang berbeda yaitu, depresi, stress dan kecemasan. Model Support Vector Machine dilatih menggunakan data DASS-42 yang telah dibersihkan, normalisasi dan balancing serta menggunakan atribut yang telah direduksi melalui proses reduksi dimensi t-Distributed Stochastic Neighbor Embedding. Data latih dan data uji dibagi dengan rasio 80:20. Berdasarkan hasil pengujian, implementasi metode Support Vector Machine (SVM) dan t-Distributed Stochastic Neighbor Embedding (t-SNE) untuk klasifikasi depresi pada data DASS-42 menunjukkan performa yang lebih baik dengan akurasi terbaik sebesar 100% pada data sebelum balancing dan 91,71% pada data setelah balancing.

Fulltext View|Download
Keywords: Support Vector Machine; t-Distributed Stochastic Neighbor Embedding; Klasifikasi; Depresi

Article Metrics:

  1. R. C. B. Vignola and A. M. Tucci, “Adaptation and Validation of the Depression, Anxiety and Stress Scale (DASS) to Brazilian Portuguese,” J Affect Disord, vol. 155, pp. 104–109, 2014, doi: https://doi.org/10.1016/j.jad.2013.10.031
  2. J. Balbuena, S. Almeyda, J. Mendoza, and J. A. Pow-Sang, “Depression Detection Using Audio-Visual Data and Artificial Intelligence: A Systematic Mapping Study,” in Proceedings of Fifth International Congress on Information and Communication Technology, S. and D. N. and J. A. Yang Xin-She and Sherratt, Ed., Singapore: Springer Singapore, 2021, pp. 296–306
  3. H. Dibeklioğlu, Z. Hammal, and J. F. Cohn, “Dynamic Multimodal Measurement of Depression Severity Using Deep Autoencoding,” IEEE J Biomed Health Inform, vol. 22, no. 2, pp. 525–536, 2018, doi: 10.1109/JBHI.2017.2676878
  4. K. Dianovinina, “Depresi pada Remaja: Gejala dan Permasalahannya,” Jurnal Psikogenesis, vol. 6, no. 1, 2018, doi: https://doi.org/10.24854/jps.v6i1.634
  5. P. E. Greenberg, A. A. Fournier, T. Sisitsky, C. T. Pike, and R. C. Kessler, “The economic burden of adults with major depressive disorder in the United States (2005 and 2010),” Journal of Clinical Psychiatry, vol. 76, no. 2, pp. 155–162, Feb. 2015, doi: 10.4088/JCP.14m09298
  6. A. Budiman, J. C. Young, and A. Suryadibrata, “Implementasi Algoritma Naive Bayes untuk Klasifikasi Konten Twitter dengan Indikasi Depresi,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 6, no. 2, 2021
  7. N. Aini, “Penerapan Jaringan Syaraf Tiruan dengan Metode Radial Basis Function (RBF) untuk Klasifikasi Gangguan Depresi,” Universitas Islam Negeri Sultan Syarif Kasim Riau, 2021
  8. S. Aprilla, M. T. Furqon, and M. A. Fauzi, “Klasifikasi Penyakit Skizofrenia dan Episode Depresi Pada Gangguan Kejiwaan Dengan Menggunakan Metode Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, vol. 2548, p. 964X, 2018
  9. K. S. Srinath, K. Kiran, S. Pranavi, M. Amrutha, P. D. Shenoy, and K. R. Venugopal, “Prediction of Depression, Anxiety and Stress Levels Using Dass-42,” in 2022 IEEE 7th International conference for Convergence in Technology, I2CT 2022, Institute of Electrical and Electronics Engineers Inc., Apr. 2022. doi: 10.1109/I2CT54291.2022.9824087
  10. C. P. Diehl and G. Cauwenberghs, “SVM Incremental Learning, Adaptation and Optimization,” in Proceedings of the International Joint Conference on Neural Networks, 2003., 2003, pp. 2685–2690 vol.4. doi: 10.1109/IJCNN.2003.1223991
  11. R. Cosme and R. Krohling, “Support Vector Machines Applied to Noisy Data Classification Using Differential Evolution with Local Search,” Jan. 2011
  12. K. Mujib, A. Hidayatno, and T. Prakoso, “Pengenalan Wajah Menggunakan Local Binary Pattern (LBP) Dan Support Vector Machine (SVM),” Transient: Jurnal Ilmiah Teknik Elektro, vol. 7, no. 1, pp. 123–130, 2018, doi: https://doi.org/10.14710/transient.v7i1.123-130
  13. W. Agustina, M. T. Furqon, and B. Rahayudi, “Implementasi Metode Support Vector Machine (SVM) Untuk Klasifikasi Rumah Layak Huni (Studi Kasus: Desa Kidal Kecamatan Tumpang Kabupaten Malang),” vol. 2, no. 10, pp. 3366–3372, 2018, Accessed: Mar. 02, 2023. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2615
  14. H. Peiqing, “Multidimensional State Data Reduction and Evaluation of College Students’ Mental Health Based on SVM,” Journal of Mathematics, vol. 2022, 2022, doi: 10.1155/2022/4961203
  15. N. A. Utami, W. Maharani, and I. Atastina, “Personality Classification of Facebook Users According to Big Five Personality Using SVM (Support Vector Machine) Method,” Procedia Comput Sci, vol. 179, pp. 177–184, Jan. 2021, doi: 10.1016/J.PROCS.2020.12.023
  16. Y. Li and F. Fan, “Classification of Schizophrenia and Depression by EEG with ANNs*,” in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, pp. 2679–2682. doi: 10.1109/IEMBS.2005.1617022
  17. B. Melit Devassy and S. George, “Dimensionality Reduction and Visualisation of Hyperspectral Ink Data using t-SNE,” Forensic Sci Int, vol. 311, p. 110194, Jun. 2020, doi: 10.1016/J.FORSCIINT.2020.110194
  18. F. Anowar, S. Sadaoui, and B. Selim, “Conceptual and Empirical Comparison of Dimensionality Reduction Algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE),” Comput Sci Rev, vol. 40, p. 100378, May 2021, doi: 10.1016/J.COSREV.2021.100378
  19. A. Russo and A. Borras, “Comparison of Dimension Reduction Techniques applied to the Analysis of Airborne Radionuclide Activity Concentration,” J Environ Radioact, vol. 244–245, p. 106813, Apr. 2022, doi: 10.1016/J.JENVRAD.2022.106813
  20. C. Xiao, F. Khayatian, and G. Dall’O’, “Unsupervised Learning for Feature Projection: Extracting Patterns from Multidimensional Building Measurements,” Energy Build, vol. 224, p. 110228, Oct. 2020, doi: 10.1016/J.ENBUILD.2020.110228
  21. A. K. Abbas, A. I. Khalil, and S. A. Abdulkader, “Social Touch Recognition Based on Support Vector Machine and T-Distributed Stochastic Neighbour Embedding as Pre-processing,” IOP Conf Ser Mater Sci Eng, vol. 1076, no. 1, p. 012042, Feb. 2021, doi: 10.1088/1757-899x/1076/1/012042
  22. S. H. Lovibond and P. F. Lovibond, Manual for the Depression, Anxiety and Stress Scales (DASS), vol. 2. 1995
  23. P. J. Norton, “Depression Anxiety and Stress Scales (DASS-21): Psychometric Analysis Across Four Racial Groups,” Anxiety Stress Coping, vol. 20, no. 3, pp. 253–265, Sep. 2007, doi: 10.1080/10615800701309279
  24. M. M. Antony and R. P. Swinson, “Psychometric Properties of the 42-item and 21-item Versions of the Depression Axiety Stress Scales in Clinical Groups and A Community Sample ,” Psychol Assess, Jun. 1998, doi: 10.1037/1040-3590.10.2.176
  25. A. Afzali, A. Delavar, A. Borjali, and S.-M. Mirzamani, “Psychometric Properties of DASS-42 as Assessed in a Sample of Kermanshah High School students.,” Journal of Research in Behavioural Sciences, vol. 5, pp. 81–92, Jan. 2007
  26. L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008, [Online]. Available: http://jmlr.org/papers/v9/vandermaaten08a.html
  27. H. Al Azies, D. Trishnanti, and E. Mustikawati, “Comparison of Kernel Support Vector Machine (SVM) in Classification of Human Development Index (HDI),” in IPTEK Journal of Proceedings Series, 2019. doi: http://dx.doi.org/10.12962/j23546026.y2019i6.6394
  28. S. Ali and K. Smith-Miles, “On Optimal Degree Selection for Polynomial Kernel with Support Vector Machines : Theoretical and Empirical Investigations,” International Journal of Knowledge-Based and Intelligent Engineering Systems, vol. 11, no. 1, pp. 1–18, 2007, doi: 10.3233/KES-2007-11101
  29. R. A. Wijayanti, M. T. Furqon, and S. Adinugroho, “Penerapan Algoritme Support Vector Machine Terhadap Klasifikasi Tingkat Risiko Pasien Gagal Ginjal,” vol. 2, no. 10, pp. 3500–3507, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
  30. S. Vijayakumar and S. Wu, “Sequential Support Vector Classifiers and Regression,” Mar. 1999
  31. M. Decuyper, M. Stockhoff, S. Vandenberghe, al -, and X. Ying, “An Overview of Overfitting and its Solutions,” J Phys Conf Ser, vol. 1168, no. 2, p. 022022, Feb. 2019, doi: 10.1088/1742-6596/1168/2/022022

Last update:

No citation recorded.

Last update: 2024-07-17 20:42:51

No citation recorded.