Departemen Informatika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
BibTex Citation Data :
@article{JMASIF59513, author = {Satria Abimanyu and Nurdin Bahtiar and Eko Adi Sarwoko}, title = {Implementasi Metode Support Vector Machine (SVM) dan t-Distributed Stochastic Neighbor Embedding (t-SNE) untuk Klasifikasi Depresi}, journal = {Jurnal Masyarakat Informatika}, volume = {14}, number = {2}, year = {2023}, keywords = {Support Vector Machine; t-Distributed Stochastic Neighbor Embedding; Klasifikasi; Depresi}, abstract = { Depresi merupakan salah satu gangguan kesehatan mental. Sekitar 300 juta jiwa atau 3,76% populasi di dunia dari segala usia dan komunitas menderita depresi. WHO memprediksi bahwa depresi akan menjadi penyebab kematian paling berdampak dalam 15 tahun ke depan. Penelitian terdahulu yang melakukan klasifikasi terhadap depresi untuk instrumen Depression Anxiety Stress Scales (DASS-42) masih sangat sedikit. Penelitian ini mengidentifikasi seseorang memiliki kemungkinan depresi, melalui proses pelatihan model klasifikasi menggunakan metode Support Vector Machine dan t-Distributed Stochastic Neighbor Embedding pada set data DASS-42. Set data DASS-42 terdiri dari 39.776 data dan dapat digunakan untuk mengklasifikasi 3 fenomena yang berbeda yaitu, depresi, stress dan kecemasan. Model Support Vector Machine dilatih menggunakan data DASS-42 yang telah dibersihkan, normalisasi dan balancing serta menggunakan atribut yang telah direduksi melalui proses reduksi dimensi t-Distributed Stochastic Neighbor Embedding. Data latih dan data uji dibagi dengan rasio 80:20. Berdasarkan hasil pengujian, implementasi metode Support Vector Machine (SVM) dan t-Distributed Stochastic Neighbor Embedding (t-SNE) untuk klasifikasi depresi pada data DASS-42 menunjukkan performa yang lebih baik dengan akurasi terbaik sebesar 100% pada data sebelum balancing dan 91,71% pada data setelah balancing. }, issn = {2777-0648}, pages = {146--158} doi = {10.14710/jmasif.14.2.59513}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/59513} }
Refworks Citation Data :
Depresi merupakan salah satu gangguan kesehatan mental. Sekitar 300 juta jiwa atau 3,76% populasi di dunia dari segala usia dan komunitas menderita depresi. WHO memprediksi bahwa depresi akan menjadi penyebab kematian paling berdampak dalam 15 tahun ke depan. Penelitian terdahulu yang melakukan klasifikasi terhadap depresi untuk instrumen Depression Anxiety Stress Scales (DASS-42) masih sangat sedikit. Penelitian ini mengidentifikasi seseorang memiliki kemungkinan depresi, melalui proses pelatihan model klasifikasi menggunakan metode Support Vector Machine dan t-Distributed Stochastic Neighbor Embedding pada set data DASS-42. Set data DASS-42 terdiri dari 39.776 data dan dapat digunakan untuk mengklasifikasi 3 fenomena yang berbeda yaitu, depresi, stress dan kecemasan. Model Support Vector Machine dilatih menggunakan data DASS-42 yang telah dibersihkan, normalisasi dan balancing serta menggunakan atribut yang telah direduksi melalui proses reduksi dimensi t-Distributed Stochastic Neighbor Embedding. Data latih dan data uji dibagi dengan rasio 80:20. Berdasarkan hasil pengujian, implementasi metode Support Vector Machine (SVM) dan t-Distributed Stochastic Neighbor Embedding (t-SNE) untuk klasifikasi depresi pada data DASS-42 menunjukkan performa yang lebih baik dengan akurasi terbaik sebesar 100% pada data sebelum balancing dan 91,71% pada data setelah balancing.
Article Metrics:
Last update:
A machine learning and DFT assisted analysis of benzodithiophene based organic dyes for possible photovoltaic applications
Last update: 2024-12-07 07:55:05
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.