skip to main content

Analisis Sentimen pada Ulasan Aplikasi Access by KAI Berbahasa Indonesia Menggunakan Word-Embedding dan Classical Machine Learning

Department of Informatics, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Received: 28 Feb 2024; Revised: 8 Sep 2024; Accepted: 20 Sep 2024; Published: 30 Nov 2024.
Editor(s): Kabul Kurniawan
Open Access Copyright (c) 2024 The authors. Published by Department of Informatics, Universitas Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Indonesia memiliki aplikasi perkeretaapian bernama Access by KAI yang dirilis oleh PT Kereta Api Indonesia (KAI). Masyarakat dapat mengunduh dan mengulas aplikasi ini melalui Google Play Store. Rating Access by KAI menurun dari tahun 2022, menandakan bahwa aplikasi belum memenuhi ekspektasi pengguna meskipun telah diperbarui. Ulasan pada platform Google Play Store dapat dianalisis untuk menggali informasi penting, salah satunya adalah sentimen. Penelitian ini melakukan analisis sentimen pada ulasan Access by KAI menggunakan word embedding dengan model Word2Vec untuk ekstraksi fitur dan classical machine learning dengan Naive Bayes dan Logistic Regression untuk algoritma klasifikasi. Metode Logistic Regression lebih baik daripada Naive Bayes dalam hal accuracy dan precision dengan nilai sebesar 68.83% dan 75.49% secara berurutan. Namun, metode Naive Bayes memiliki keunggulan dalam hal recall dengan nilai sebesar 45.07%. Pada penelitian ini, ulasan Access by KAI memiliki sentimen dominan negatif sejumlah 335 data dari total 400 data tes. Kata “mudah” dan “suka” relevan sebagai alasan ulasan bersentimen positif, sedangkan Kata “aplikasi”, “bayar”, dan “tiket” relevan sebagai alasan ulasan bersentimen negatif.
Fulltext View|Download
Keywords: Analisis sentimen; ulasan; access by kai; word embedding; machine learning

Article Metrics:

  1. Badan Pusat Statistik (BPS), Jumlah Penumpang Kereta Api (Ribu Orang), 2022, Badan Pusat Statistik (BPS), 2022
  2. R. D. Wahyuni and A. N. Utomo, "Using The Lexicon Method for Analysis Sentiments on KAI Access Application Reviews on Google Play Store," Jurnal Rekayasa Informasi, vol. 11, no. 2, pp. 134-145, 2 10 2022
  3. R. P. Nawangsari, R. Kusumaningrum and A. Wibowo, "Word2Vec for Indonesian Sentiment Analysis towards Hotel Reviews: An Evaluation Study," Procedia Computer Science, vol. 157, pp. 360-366, 2019. doi: 10.1016/j.procs.2019.08.178
  4. Y. Jin, K. Cheng, X. Wang and L. Cai, "A Review of Text Sentiment Analysis Methods and Applications," Frontiers in Business, Economics and Management, vol. 10, no. 1, pp. 58-64, 2023. doi: 10.54097/fbem.v10i1.10171
  5. R. Kusumaningrum, I. Z. Nisa, R. P. Nawangsari and A. Wibowo, "Sentiment analysis of Indonesian hotel reviews: from classical machine learning to deep learning," International Journal of Advances in Intelligent Informatics, vol. 7, no. 3, pp. 292-303, 30 11 2021. doi: 10.26555/ijain.v7i3.737
  6. S. A. H. Bahtiar, C. K. Dewa and A. Luthfi, "Comparison of Naïve Bayes and Logistic Regression in Sentiment Analysis on Marketplace Reviews Using Rating-Based Labeling," Journal of Information Systems and Informatics, vol. 5, no. 3, pp. 915-927, 2023. doi: 10.51519/journalisi.v5i3.539
  7. R. Maulana, A. Voutama and T. Ridwan, "Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store Menggunakan Algoritma NBC," Jurnal Teknologi Terpadu, vol. 9, no. 1, pp. 42-48, 2023. doi: 10.54914/jtt.v9i1.609
  8. Bird, Steven, E. Loper and E. Klein, Natural Language Processing with Python, O’Reilly Media Inc, 2019
  9. A. Librarian, "High Quality Stemmer Library for Indonesian Language (Bahasa)," 2017. [Online]. Available: https://github.com/sastrawi
  10. T. Mikolov, G. Corrado, K. Chen and J. Dean, "Efficient Estimation of Word Representations in Vector Space," Arizona, 2013. doi: 10.48550/arXiv.1301.3781
  11. L. E. Pradana and Y. Ruldeviyani, "Sentiment Analysis of Nanovest Investment Application Using Naive Bayes Algorithm," Jurnal Nasional Pendidikan Teknik Informatika, vol. 12, no. 2, pp. 283-293, 2023. doi: 10.23887/janapati.v12i2.62302

Last update:

No citation recorded.

Last update: 2024-12-25 10:01:50

No citation recorded.