Department of Informatics, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
BibTex Citation Data :
@article{JMASIF62383, author = {R. Damanhuri and Vito Ahmad Husein}, title = {Analisis Sentimen pada Ulasan Aplikasi Access by KAI Berbahasa Indonesia Menggunakan Word-Embedding dan Classical Machine Learning}, journal = {Jurnal Masyarakat Informatika}, volume = {15}, number = {2}, year = {2024}, keywords = {Analisis sentimen; ulasan; access by kai; word embedding; machine learning}, abstract = {Indonesia memiliki aplikasi perkeretaapian bernama Access by KAI yang dirilis oleh PT Kereta Api Indonesia (KAI). Masyarakat dapat mengunduh dan mengulas aplikasi ini melalui Google Play Store. Rating Access by KAI menurun dari tahun 2022, menandakan bahwa aplikasi belum memenuhi ekspektasi pengguna meskipun telah diperbarui. Ulasan pada platform Google Play Store dapat dianalisis untuk menggali informasi penting, salah satunya adalah sentimen. Penelitian ini melakukan analisis sentimen pada ulasan Access by KAI menggunakan word embedding dengan model Word2Vec untuk ekstraksi fitur dan classical machine learning dengan Naive Bayes dan Logistic Regression untuk algoritma klasifikasi. Metode Logistic Regression lebih baik daripada Naive Bayes dalam hal accuracy dan precision dengan nilai sebesar 68.83% dan 75.49% secara berurutan. Namun, metode Naive Bayes memiliki keunggulan dalam hal recall dengan nilai sebesar 45.07%. Pada penelitian ini, ulasan Access by KAI memiliki sentimen dominan negatif sejumlah 335 data dari total 400 data tes. Kata “mudah” dan “suka” relevan sebagai alasan ulasan bersentimen positif, sedangkan Kata “aplikasi”, “bayar”, dan “tiket” relevan sebagai alasan ulasan bersentimen negatif.}, issn = {2777-0648}, pages = {97--106} doi = {10.14710/jmasif.15.2.62383}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/62383} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2024-12-25 10:01:50
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.