Politeknik Negeri Madiun, Indonesia
BibTex Citation Data :
@article{JMASIF63641, author = {Nisa'ul Hafidhoh and Ardian Prima Atmaja and Gus Nanang Syaifuddiin and Ikhwan Baidlowi Sumafta and Salva Mahardhika Pratama and Hafsah Nur Khasanah}, title = {Machine Learning untuk Prediksi Kegagalan Mesin dalam Predictive Maintenance System}, journal = {Jurnal Masyarakat Informatika}, volume = {15}, number = {1}, year = {2024}, keywords = {CRISP-DM, exploratory data analysis, kegagalan mesin, machine learning, predictive maintenance system}, abstract = { Dalam menghadapi Revolusi Industri 4.0, teknologi seperti Internet of Things, Big Data, dan Kecerdasan Buatan menjadi kunci dalam modernisasi industri. Pendekatan Machine Learning digunakan untuk memproses data multivariabel berdimensi tinggi dan mengekstrak hubungan tersembunyi dalam lingkungan industri yang kompleks. Machine Learning digunakan untuk mengklasifikasikan kegagalan mesin dalam membangun Predictive Maintenance System. Penelitian ini mengadopsi siklus CRISP-DM (Cross Industry Standard Process for Data Mining) yang terdiri dari tahap business understanding, data understanding, data preparation, modelling, evaluation dan deployment. Predictive Maintenance Dataset berupa data sintetis yang digunakan dalam penelitian ini mencerminkan situasi industri nyata terdiri dari 10.000 baris data dengan sepuluh fitur. Jenis kegagalan mesin diklasifikasikan menjadi Heat Dissipation Failure, Power Failure, Overstrain Failure, dan Tool Wear Failure. Exploratory Data Analysis dilakukan untuk mendapatkan ringkasan dan visualisasi data. Pendekatan machine learning menggunakan metode Logistic Regression dan hasil evaluasi model mencapai akurasi 96,87%, sesuai dengan kriteria sukses data. Hasil pemodelan machine learning yang dikembangkan kemudian diimplementasikan dalam aplikasi Predictive Maintenance System berbasis web untuk memudahkan pemantauan kondisi mesin dan prediksi kegagalan mesin oleh pengguna. }, issn = {2777-0648}, pages = {56--66} doi = {10.14710/jmasif.15.1.63641}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/63641} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2024-11-20 16:08:58
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.