skip to main content

Machine Learning untuk Prediksi Kegagalan Mesin dalam Predictive Maintenance System

Politeknik Negeri Madiun, Indonesia

Received: 8 May 2024; Revised: 22 May 2024; Accepted: 25 May 2024; Available online: 31 May 2024; Published: 31 May 2024.
Editor(s): Salman Alfarisi
Open Access Copyright (c) 2024 The authors. Published by Department of Informatics Universitas Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Dalam menghadapi Revolusi Industri 4.0, teknologi seperti Internet of Things, Big Data, dan Kecerdasan Buatan menjadi kunci dalam modernisasi industri. Pendekatan Machine Learning digunakan untuk memproses data multivariabel berdimensi tinggi dan mengekstrak hubungan tersembunyi dalam lingkungan industri yang kompleks. Machine Learning digunakan untuk mengklasifikasikan kegagalan mesin dalam membangun Predictive Maintenance System. Penelitian ini mengadopsi siklus CRISP-DM (Cross Industry Standard Process for Data Mining) yang terdiri dari tahap business understanding, data understanding, data preparation, modelling, evaluation dan deployment. Predictive Maintenance Dataset berupa data sintetis yang digunakan dalam penelitian ini mencerminkan situasi industri nyata terdiri dari 10.000 baris data dengan sepuluh fitur. Jenis kegagalan mesin diklasifikasikan menjadi Heat Dissipation Failure, Power Failure, Overstrain Failure, dan Tool Wear Failure. Exploratory Data Analysis dilakukan untuk mendapatkan ringkasan dan visualisasi data. Pendekatan machine learning menggunakan metode Logistic Regression dan hasil evaluasi model mencapai akurasi 96,87%, sesuai dengan kriteria sukses data. Hasil pemodelan machine learning yang dikembangkan kemudian diimplementasikan dalam aplikasi Predictive Maintenance System berbasis web untuk memudahkan pemantauan kondisi mesin dan prediksi kegagalan mesin oleh pengguna.              
Fulltext View|Download
Keywords: CRISP-DM, exploratory data analysis, kegagalan mesin, machine learning, predictive maintenance system

Article Metrics:

  1. B. Prasetyo and U. Trisyanti, "Revolusi Industri 4.0 dan Tantangan Perubahan Sosial", IPTEK: Journal of Proceedings Series, no. 5, pp. 22–28, 2018
  2. D. Lase, "Pendidikan di Era Revolusi Industri 4.0", SUNDERMANN: Jurnal Ilmiah Teologi, Pendidikan, Sains, Humaniora Dan Kebudayaan, vol. 12, no.2, pp. 28-43, 2019
  3. Y. Puspita, Y, Fitriani, S. Astuti, and Sri Novianti, “Selamat Tinggal Revolusi Industri 4.0, Selamat Datang Revolusi Industri 5.0”, in Prosiding Seminar Nasional Pendidikan Program Pascasarjana Universitas PGRI Palembang 2020, p. 122-130
  4. Y. Ran, X. Zhou, P. Lin, Y. Wen, R. Deng, “Survey of Predictive Maintenance: Systems, Purposes and Approaches”, IEEE Communications Surveys and Tutorials 2019, arXiv 2019, arXiv:1912.07383
  5. M. Bevilacqua and M. Braglia, “The analytic hierarchy process applied to maintenance strategy selection”, Reliability Engineering & System Safety, vol. 70, no. 1, pp. 71–83, 2020
  6. A. Vemal, “Development of Apps for Predictive Maintenance System: a Case Study in HP”, PhD Thesis, Universiti Sains Malaysia, Malaysia, 2018
  7. S. Safavi, M.A. Safavi, H. Hamid, and S. Fallah, “Multi-Sensor Fault Detection, Identification, Isolation and Health Forecasting for Autonomous Vehicles”. Sensors. vol. 21, no. 7, p. 2547, 2021
  8. Y.-C. Chiu, F.-T. Cheng, and H.-C. Huang, “Developing a factory-wide intelligent predictive maintenance system based on Industry 4.0,” Journal of the Chinese Institute of Engineers, vol. 40, no. 7, pp. 562–571, Oct. 2017, doi: 10.1080/02533839.2017.1362357
  9. S. Ayvaz and K. Alpay, “Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time,” Expert Systems with Applications, vol. 173, p. 114598, Jul. 2021, doi: 10.1016/j.eswa.2021.114598
  10. A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, and G. Elger, “Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry,” Reliability Engineering & System Safety, vol. 215, p. 107864, Nov. 2021, doi: 10.1016/j.ress.2021.107864
  11. T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. D. P. Francisco, J. P. Basto, and S. G. S. Alcalá, “A systematic literature review of machine learning methods applied to predictive maintenance,” Computers & Industrial Engineering, vol. 137, p. 106024, Nov. 2019, doi: 10.1016/j.cie.2019.106024
  12. J. A. Solano, D. C. L. Cuesta, S. F. U. Ibanez, and J. R. C. Hernandez, “Predictive Models Assesment based on CRISP-DM Methodology for Students Performance in Colombia – Saber 11 Test”, in Procedia Computer Science, 198, 2022, pp. 512-517
  13. M. Hosseini, N. Abdolvand, dan S. R. Harandi, "Two-dimensional analysis of customer behavior in traditional and electronic banking", Digital Business, Volume 2, Issue 2, 2022
  14. C. Schröer, F. Kruse, dan J. M. Gómez, "A Systematic Literature Review on Applying CRISP-DM Process Model", Procedia Computer Science, Volume 181, 2021, pp. 526-534
  15. “AI4I 2020 Predictive Maintenance Dataset”, 2020, UCI Machine Learning Repository, https://doi.org/10.24432/C5HS5C
  16. W. Y. Ayele, "Adapting CRISP-DM for Idea Mining: A Data Mining Process for Generating Ideas Using a Textual Dataset", International Journal of Advanced Computer Science and Applications, vol. 11, no. 6, 2020
  17. J. Brzozowska, J. Pizoń, G. Baytikenova, G. O. L. A. Arkadiusz, A. Zakimova, dan K. Piotrowska, “Data Engineering In Crisp-Dm Process Production Data–Case Study”, Applied Computer Science, vol. 19, no.3, p. 83-95, 2023
  18. Z. Yang dan D. Li, “Application of Logistic Regression with Filter in Data Classification”, in Chinese Control Conference (CCC), 3755–3759
  19. X. Hui, Comparison and Application of Logistic Regression and Support Vector Machine in Tax Forecasting, Proceedings - 2020 International Signal Processing, Communications and Engineering Management Conference, ISPCEM, p. 48–52, 2020
  20. K. Sahoo, A. K. Samal, J. Pramanik, dan S. K. Pani, “Exploratory data analysis using Python”. International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 8, no. 12, 2019

Last update:

No citation recorded.

Last update: 2024-12-24 18:57:37

No citation recorded.