Pengukuran Penerimaan Sistem Informasi EWSKIA Berdasarkan Persepsi Pengguna dengan Menggunakan Technology Acceptance Model

*Aris Puji Widodo -  Universitas Diponegoro, Indonesia
Farid Agushybana -  Universitas Diponegoro, Indonesia
Sutopo Patria Jati -  Universitas Diponegoro, Indonesia
Received: 2 Aug 2018; Published: 23 Oct 2018.
Open Access
Citation Format:
Article Info
Section: Research Articles
Language: EN
Full Text:
Statistics: 683 281
Abstract
This study is a quantitative research that has a goal to measure the level of user acceptance of EWSKIA information system based on perception. EWSKIA is a healthcare application tool used to perform the process of recording and monitoring the health conditions of pregnant and childbirth mothers. The model used in this research is using Technology Acceptance Model (TAM) model with 3 variables, namely Perceived Ease of Use (PEOU), Perceived Usefulness (PU), and Behavioral Intention to Use (BITU). This variable consists of independent variables namely PEOU and PU, and the dependent variable is BITU. The respondents were 145 midwives from Grobogan District, Temanggung Regency and Salatiga City. Data analysis to conduct causal relationships between variables using Partial Least Square (PLS). The results of this study statistically show that the 3 hypotheses of H1, H2, and H3 adopted from the TAM model have a positive and significant influence. This is indicated by the value of the regression coefficient is positive and the coefficient of P value is less than 0.005
Keywords
Quantitative; EWSKIA; TAM; Acceptance; Ease of Use.

Article Metrics:

  1. Beynon,D., P., 2009. Management Information Systems. 10th edition, Palgrave, Basingstoke.
  2. Chau, P., Y., K., 1996. Measurement Scales for Perceived Usefulness and Perceived Ease of Use.
  3. Davis, M., 1986. A Technology of Acceptance Model for Empirically testing new-end user information system: Theory and Result. Massachusetts, USA: Sloan School of Management, Massachusets Institute of Technology.
  4. Dharmawan, Y., Wigati, P.,A., Dwijayanti, F., 2015. Kinerja petugas dalam pencatatan dan pelaporan PWS KIA di puskesmas duren. Jurnal Kesehatan Masyarakat. Jurnal Kesehaatan Masyarakat, Volume 10 (2), 210-217.
  5. Hox J., Bechger T., 1998. An introduction to structural equation modeling. Family Science Rewiew, 11:354–373.
  6. Ghozali, I., 2006. Structural Equation Modeling, Metode Alternatif dan Partial Least Square. Edisi 2. Semarang: Badan Penerbit Universitas Diponegoro.
  7. Ghozali, I., 2013. Model Persamaan Struktural Konsep dan Aplikasi Dengan Program Amos 21.0, Cetakan Kelima, Badan Penerbit Universitas Diponegoro.
  8. Laudon, K., C., 2006. Management Information Systems. Edisi 8. New Jersey: Prentice- Hall, Inc.
  9. Lowry, P., B., and Gaskin, J., 2014. Partial Least Squares (PLS) Structural Equation Modeling (SEM) for Building and Testing Behavioral Causal Theory: When to Choose It and How to Use It. IEEE Transactions on Professional Communication, Volume: 57, Issue: 2, 123 - 146.
  10. Malhotra, Y., Galetta, D., F., 1999. Extending The Technology Acceptance Model to Account for Social Influence
  11. Monecke, A., Leisch, F., 2012. SEM PLS: Structural equation modeling using partial least square. Journal of Statistic Software.
  12. Nunnally, J., C., 1981. Psycometric Theory, 2nd ed., Tata McGraw-Hill Publishing Company Limited, New Delhi.
  13. Park, S., Y., 2009. An analysis of the Technology Acceptance Model in Understanding University Students Behavioral Intention to Use e-Learning. Educational Technology and Society 12 (3): 150-162.
  14. Priyanka, S., Kumar, M., A., 2014. A study on Adoption of E-Reccrukment Using Technology Acceptance Model (TAM) with reference to graduating students in iniversitiesin Bahrain. International Journal of Advance Research in Computer Scienceand Management Studies.Vol,2, Issue 9, 2321-7782.
  15. Rigdon, E., E., 1998. Structural equation modeling. In Modern methods for business research, G. A. Marcoulides (editor). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.
  16. Santouridisa, I., Kyritsib, M. 2014. Investigating the Determinants of Internet Banking Adoption in Greece. Procedia Economics and Finance.
  17. Sari, M., W., dan Baridwan. Z., 2012. Sikap penggunaan mobile commerce: modifikasi teori technology acceptance model. Jurnal Ilmiah Mahasiswa Fakultas Ekononomi Universitas Brawijaya.
  18. Sarstedt, M., Ringle, C.M., Smith, D., Reams, R., 2014. Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, Volume 5, Issue 1, 105-115.
  19. Suki, N., M., 2011. Exploring the relationship between perceived usefulness, perceived ease of use, perceived enjoyment, attitude and subscribers’ intention towards using 3G mobile services. Journal of Information Technology Management, Vol. XXII, No. 1, 1-7.
  20. Supriyati, Cholil, M. 2017. Aplikasi technology acceptance model pada sistem informasi manajemen rumah sakit. Jurnal Bisnis & Manajemen, 17 (1), 81 - 102.
  21. Thompson, R., L, Christopher A. Higgins, C. A., Howell, J. M., 2013. Influence of EYperience on Personal Computer Utilization: Testing A Conceptual Model, Journal of Management Information sistems
  22. Wager, K.A., Lee, W. F., Glaser & P.,J., 2009. Health Care Information Systems: A Practical Approach For Health Care Management. Second edition, Addison Wiley.
  23. WHO, 2015. Countdown to 2015, Health Metrics Network (HMN), Uni Monitoring maternal, newborn and child health: understanding key progress indicators.
  24. Wong, G., K., W., 2015. Understanding technology acceptance in pre-service teachers of primary mathematics in Hong Kong. Australasian Journal of AducationalTechnology, Volume 31, Nomor 6, pp 108-120.