Teknologi Geolocation Berbasis Android dengan Metode K-Means untuk Pemetaan UMKM di Kabupaten Jepara

*Noor Azizah  -  Universitas Islam Nahdlatul Ulama Jepara, Indonesia
Nur Aeni Widiastuti  -  Universitas Islam Nahdlatul Ulama Jepara, Indonesia
Received: 16 Jul 2018; Published: 25 Oct 2018.
DOI: https://doi.org/10.21456/vol8iss2pp218-224 View
Data UMKM Kabupaten Jepara
Subject umkm, sentra industri, kabupaten jepara
Type Data Set
  Download (25KB)    Indexing metadata
Open Access
Citation Format:

Micro, Small and Medium Enterprises (MSMEs) are industrial sectors that are very important to sustain the economy of Jepara Regency. There are 18,695 Small and Medium Enterprises (SMEs) in Jepara Regency in 2016, including wood carving, troso weaving, chopper brass (monel) jewelry, sculpture, rattan crafts, calligraphy, and reliefs. The number of SMEs in Jepara makes buyers or tourists have many choices in buying products of varying quality and competitive prices. In addition, sometimes they are also confused in finding the location of SMEs. Therefore, this application is made to solve these problems by making an application that provides location-based information center industrial services. This application is expected to facilitate tourists in finding the location of the industry to be addressed. Geolocation technology is used to identify real-world geographic locations that can be applied to the Android operating system. So this application provides store description services, product photos, and maps. SMEs are presented in the application in the map using the k-mean algorithm. The parameters used are the type of industry, number of employees, turnover per year, tools used. For the clustering have 3 categories, there are namely small, medium and large. The advantages of this algorithm can group data according to the similarity of data used in one group and minimize the same data between groups and cannot process data that is a missing value.

Note: This article has supplementary file(s).

Keywords: Geolocation technology; K-Means; Clustering; Android; MSME.
Funding: Ristek DIKTI, Universitas Islam Nahdlatul Ulama Jepara, Program Studi Teknik Informatika, Program Studi Sistem Informasi

Article Metrics:

  1. Anwar, S. N., Nugroho, I., Supriyanto, E. 2015. Model Rute Dan Peta Interaktif Posyandu Di Kota Semarang Menggunakan Geolocation Dan Haversine Berbasis Mobile Android. Dinamik, pp. 978–979)
  2. Badan Pusat Statistik Kabupaten Jepara, 2016. Kabupaten Jepara Dalam Angka 2016Website: https://jeparakab.bps.go.id/. Diakses tanggal 09 Mei 2017
  3. Harwati, Alfiana, P.A, Wulandari A.F., 2015. Mapping Student’s Performance Based on Data Mining Approach (A Case Study). Agriculture and Agricultural. Science Procedia, (3), 173 – 177
  4. Kurniawan, Y., 2016. Monitoring dan Pemetaan UMKM Sektor Informal Kota Malang Berbasis Sistem Informasi Geografis
  5. Ong, J.O., 2013. Implementasi Algotritma K-means clustering untuk menentukan strategi marketing president university. Jurnal Ilmiah Teknik Industri, vol.12, no(juni), 10–20
  6. Pascapraharastyan, 2015. Rancang bangun sistem informasi manajemen arsip rumah sakit bedah surabaya berbasis web. Jurnal Sistem Informasi, Vol 3. No. 139-143
  7. Santoso, B., 2007. Data Minning Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu
  8. Wakhidah, N. 2010. Clustering Menggunakan K-Means Algorithm (K-Means Algorithm Clustering). Jurnal Transformatika, vol 8 no 1
  9. Wulandari, M.S., Noveandini, R., 2015. Digitalisasi pemetaan ukm tenun Garut berbasis sistem informasi geografis sebagai media komunikasi dan pemasaran produk lokal, Proseding Sendi, 978–979

Last update: 2021-02-25 16:48:52

No citation recorded.

Last update: 2021-02-25 16:48:53

No citation recorded.