BibTex Citation Data :
@article{JSINBIS45920, author = {Dafiz Adi Nugroho and Catur Edi Widodo and Rahmat Gernowo}, title = {Kombinasi Analytical Hierarchy Process, C4.5, dan Particle Swarm Optimization pada Klasifikasi Pegawai}, journal = {Jurnal Sistem Informasi Bisnis}, volume = {12}, number = {2}, year = {2022}, keywords = {Data Mining; Classification; AHP; C4.5; PSO.}, abstract = { Decision Tree C4.5 is widely implemented in various research fields in determining classification, but there are still weaknesses in Decision Tree C4.5, one of which is that it cannot rank each alternative. In this study, to overcome the weakness of Decision Tree C4.5, a combination of Analytical Hierarchy Process (AHP) methods, Decision Tree C4.5, and Particle Swarm Optimization (PSO) methods is proposed in the case study of employee classification for promotion recommendations. The research begins by determining the criteria and weighting criteria from the interview results which are then processed with AHP to produce employee ratings and eligibility labels for the classification process. The classification process uses the Decision Tree C4.5 method which is optimized with the PSO algorithm so as to produce employee eligibility data for promotions. The results of the combined research of AHP, Decision Tree C4.5, and PSO methods show that AHP can produce employee ratings based on performance and potential criteria, and Decision Tree C4.5 classification and optimization with PSO have better accuracy results, namely 95.80% compared to Decision Tree C4.5 method without PSO optimization is 93.40%. Based on the results of the ranking and classification of this research can be used as a basis for promotion of employees. }, issn = {2502-2377}, pages = {81--88} doi = {10.21456/vol12iss2pp81-88}, url = {https://ejournal.undip.ac.id/index.php/jsinbis/article/view/45920} }
Refworks Citation Data :
Decision Tree C4.5 is widely implemented in various research fields in determining classification, but there are still weaknesses in Decision Tree C4.5, one of which is that it cannot rank each alternative. In this study, to overcome the weakness of Decision Tree C4.5, a combination of Analytical Hierarchy Process (AHP) methods, Decision Tree C4.5, and Particle Swarm Optimization (PSO) methods is proposed in the case study of employee classification for promotion recommendations. The research begins by determining the criteria and weighting criteria from the interview results which are then processed with AHP to produce employee ratings and eligibility labels for the classification process. The classification process uses the Decision Tree C4.5 method which is optimized with the PSO algorithm so as to produce employee eligibility data for promotions. The results of the combined research of AHP, Decision Tree C4.5, and PSO methods show that AHP can produce employee ratings based on performance and potential criteria, and Decision Tree C4.5 classification and optimization with PSO have better accuracy results, namely 95.80% compared to Decision Tree C4.5 method without PSO optimization is 93.40%. Based on the results of the ranking and classification of this research can be used as a basis for promotion of employees.
Article Metrics:
Last update:
Last update: 2024-12-21 14:32:36
Authors who submit the manuscripts to Journal JSINBIS must understand and agree that if the manuscript is accepted for publication, the copyright of the article belongs to JSINBIS and Diponegoro University as the journal publisher.
Copyright includes the exclusive right to reproduce and provide articles in all forms and media, including reprints, photographs, microfilm and any other similar reproductions, as well as translations. The author reserves the rights to the following:
JSINBIS and Diponegoro University and the Editors make every effort to ensure that no false or misleading data, opinions or statements are published in this journal. The content of articles published in JSINBIS is the sole and exclusive responsibility of the respective authors.
Copyright transfer agreement can be found here: [Copyright transfer agreement in doc] and [Copyright transfer agreement in pdf].
JSINBIS (Jurnal Sistem Informasi Bisnis) is published by the Magister of Information Systems, Post Graduate School Diponegoro University. It has e-ISSN: 2502-2377 dan p-ISSN: 2088-3587 . This is a National Journal accredited SINTA 2 by RISTEK DIKTI No. 48a/KPT/2017.
Journal JSINBIS which can be accessed online by http://ejournal.undip.ac.id/index.php/jsinbis is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats