skip to main content

Analisis Interaksi Guru dan Peserta Didik dengan Social Network Analysis yang Menumbuhkan Minat Belajar di SMK Negeri 1 Tengaran

*Joko Listiawan Sukowati  -  Universitas Kristen Satya Wacana, Indonesia
Ade Iriani  -  Universitas Kristen Satya Wacana, Indonesia
Irwan Sembiring  -  Universitas Kristen Satya Wacana, Indonesia
Open Access Copyright (c) 2023 JSINBIS (Jurnal Sistem Informasi Bisnis)

Citation Format:
Abstract

School is a place where students gain knowledge and as a place where the process of interaction between teachers and students occurs.. The interaction between teachers and students greatly influences the learning interests of students. This study aims to find teachers and indicators that influence students' interest in learning in the school environment using Social Network Analysis (SNA). The research was conducted at Tengaran 1 Public Vocational School with the research object being teachers and class XI students. The results showed that the most dominant actor or teacher in degree centrality, which was chosen by the students, was the actor or teacher with the Cp code, with a value of 26. The next step after calculating the SNA and measure network is indicator validation and classification using Naïve Bayes. The results of the indicator validation show that the validation value for each indicator is more than 0.5, so the indicators can be said to be valid. The classification results using naïve Bayes, with a dataset divided by 80% training data and 20% test data showing an accuracy of 85%. It is hoped that the results of this research can be input to teachers so that in schools they are more active in participating in various kinds of activities held by schools, and are active in interacting with students in the teaching and learning process. So, it is hoped that students will be more active in learning.

Fulltext View|Download
Keywords: Interaction; Interest to Learn; SNA; SMK Negeri 1 Tengaran

Article Metrics:

  1. Anwar, M.T., 2018. Analisis pola persebaran pornografi pada media sosial dengan social network analysis. Jurnal Buana Informaso 9 (1), 43-52. https://doi.org/10.24002/jbi.v9i1.1667
  2. Borgatti, S. P., Everett, M. G., Freeman, L. C., 2002. Ucinet for windows: software for social network analysis. Harvard, MA, Analysis Technology 6, 12-15
  3. Borgatti, S. P., Everett, M. G., Johnson, J. C.., 2013. 10 centrality bt - analyzing social networks. In Analyzing Social Networks 2, 304
  4. Borgatti, S. P., Brass, D. J., Halgin, D. S.., 2014. Social network research: confusions, criticisms, and controversies", contemporary perspectives on organizational social networks (research in the sociology of organizations). Emerald Group Publishing Limited 40, 1-29. https://doi.org/10.1108/S0733-558X(2014)0000040001
  5. Dewi, F. K., Yudhoatmojo, S. B., Budi, I.. 2017. Identification of opinion leader on rumor spreading in online social network Twitter using edge weighting and centrality measure weighting. In 2017 Twelfth International Conference on Digital Information Management (ICDIM), 313 – 318. https://doi.org/10.1109/ICDIM.2017.8244680
  6. Diantyastuti, R., 2018. Pengaruh interaksi guru- siswa dan lingkungan belajar terhadap minat belajar ekonomi siswa. Jurnal Pendidikan dan Ekonomi 7, 6
  7. Eriyanto., 2014. Analisis jaringan komunikasi strategi baru dalam penelitian ilmu komunikasi dan ilmu sosial lainnya. Kencana, Jakarta
  8. Fitriani., 2016. Analisis jaringan komunikasi informal ' adidas team ' di PT. damco indonesia jakarta pusat. Jurnal Visi Komunikasi 15, 275-285
  9. Giri, B. E., Manongga, D., Iriani, A., 2014. Using social networking analysis (SNA) to analyze collaboration between students (case study: students of open university in kupang). International Journal of Computer Application 85, 44-49. https://doi.org/10.5120/14808-3022
  10. Hanneman, R. A., Riddle, M., 2005. Introduction to social network methods: table of contents. University of California, Riverside, CA, USA
  11. Luo, Q., Zhong, D., 2015. Using social network analysis to explain communication characteristics of travel-related electronic word-of-mouth on social networking sites. Tour Management 46, 274-282. https://doi.org/10.1016/j.tourman.2014.07.007
  12. Maulidya, F. N., Witanti, W., Hadiana, A. I., 2018. Pembangunan sistem informasi pola hubungan kerja antar tenaga medis pada rumah sakit jiwa provinsi XYZ menggunakan social network analysis. In Prosiding Seminar Sains Nasional dan Teknologi 1(1), 214-219
  13. Pengestu, M., 2015. Jaringan Komunikasi di The Piano Institute Surabaya. Jurnal E- Komunikasi 3, 1-12
  14. Prell, C., 2012. Social Network Analysis: History, Theory and Methodology 1 - 272
  15. Santoso, L., Manongga, D., Iriani, A., 2020. Collaboration analysis of semarang city dengue
  16. hemorrhagic fever health surveillance officer with social network analysis. Intensif 4(1), 1-21. https://doi.org/10.29407/intensif.v4i1.12976
  17. Tuhuteru, H., Iriani, A., 2017. Analisis kolaborasi penelitian ilmiah dosen fakultas x dengan social network analysis (SNA). Jurnal Teknik Informatika dan Sistem Informasi 4(1), 149-158. https://doi.org/10.28932/jutisi.v4i1.758
  18. Valente, T. W., 2010. Social networks and health: models, methods, and applications. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301014.001.0001
  19. Wasserman, S., Faust, K., 1994. Social network analysis: Methods and applications. Cambridge Univ. Press 1, 116. https://doi.org/10.1017/CBO9780511815478
  20. Wardhani, A. P., Hasiholan, L. B., Minarsih, M. M., 2016. Pengaruh lingkungan kerja, komunikasi dan kepemimpinan terhadap kinerja pegawai. Journal of Managent 2, 344-354
  21. Zusrony, E., Kuncoro, W., Nurrochman, N., 2018. Pemetaan persebaran nasabah kredit macet perusahaan multifinance. Intensif 2, 107. https://doi.org/10.29407/intensif.v2i2.12041

Last update:

No citation recorded.

Last update: 2024-11-21 22:30:34

No citation recorded.