skip to main content

Sistem Pendukung Keputusan Berbasis K-Means untuk Evaluasi Keberhasilan Bisnis dan Nilai Perusahaan

Sarmini Sarmini  -  Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto, Indonesia
*Windiya Ma'arifah  -  Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto, Indonesia
Imam Tahyudin  -  Program Studi Sistem Informasi, Fakultas Ilmu Komputer, Universitas Amikom Purwokerto, Indonesia
Open Access Copyright (c) 2024 Jurnal Sistem Informasi Bisnis

Citation Format:
Abstract

Business development is in line with the development of increasingly sophisticated technology. This requires every company to compete and be motivated to increase its value as an indicator of success in managing the company so that investors are interested in investing. This study aims to design a K-means-based Decision Support System with a clustering approach to classify the growth rate of company value. Investment Opportunity Set (IOS) and profitability variables are the leading indicators of increasing company value. The problem formulation is how the design of this K-means-based decision support system can assist in classifying the growth rate of the company's value based on the IOS and profitability variables. This research aims to produce a decision support system that can organize the growth rate of company value using the K-means method. System testing is conducted to evaluate the effectiveness of the applied clustering method, focusing on the accuracy of the results. The weighting of IOS and profitability variables is based on the percentage of positive relationship to firm value, and the ultimate goal is to group companies with different growth rates. As a result, the K-means-based Decision Support System, or "Business Growth Prediction Decision Support System," successfully clustered the growth rate of firm value. With reasonable accuracy, measured using the silhouette coefficient, the calculation results show an overall mean silhouette coefficient of 0.684, close to the maximum value of 1. This result confirms that this decision support system can group companies in the L (Low), M (Medium), and H (High) categories based on the level of value growth, using the IOS and profitability variables as the leading indicators. Thus, this research supports decisions related to company growth strategies using K-means-based decision support systems.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Hasil Cek Plagiarisme
Subject
Type Research Instrument
  Download (3MB)    Indexing metadata
Keywords: Decision Support System (DSS); Clustering; K-Means; Silhouette Coefficient; Company Value; Rapid Application Development (RAD)

Article Metrics:

  1. Agmeka, F., Wathoni, R.N., Santoso, A.S., 2019. The Influence of Discount Framing Towards Brand Reputation and Brand Image on Purchase Intention and Actual Behaviour in E-Commerce. Procedia Computer Science, 161, 851-858. Https://Doi.Org/10.1016/J.Procs.2019.11.192
  2. Bagaskara, R.S., Titisari, K.H., Dewi, R.R., 2021. Pengaruh Profitabilitas , Leverage , Ukuran Perusahaan dan Kepemilikan Manajerial Terhadap Nilai Perusahaan. Forum Ekonomi, 23(1), 29-38
  3. Baihaqi, W.M., Pinilih, M., Rohmah, M., 2020. Kombinasi K-Means dan Support Vector Machine (SVM) untuk Memprediksi Unsur Sara pada Tweet. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(3), 501-510. https://doi.org/10.25126/jtiik.2020732126
  4. Burhanudin, H., Putra, S.B.M., Hidayati, S.A., 2021. Pengaruh Pengetahuan Investasi, Manfaat Investasi, Motivasi Investasi, Modal Minimal Investasi Dan Return Investasi Terhadap Minat Investasi Di Pasar Modal ( Studi Pada Mahasiswa Fakultas Ekonomi Dan Bisnis Universitas Mataram ). Distribusi - Journal of Management and Business, 9(1), 15-28. https://doi.org/10.29303/distribusi.v9i1.137
  5. Christanti, N., Mahastanti, L.A., 2011. Faktor-Faktor Yang Dipertimbangkan Investor Dalam Melakukan Investasi. Jurnal Manajemen Teori Dan Terapan| Journal Of Theory And Applied Management, 4(3), 37–51. https://doi.org/10.20473/jmtt.v4i3.2424
  6. Darpi, D., Nurhayati, S., 2022. Sistem Pendukung Keputusan Pendeteksi Kerusakan Komputer Pada Universitas Al-Khairiyah. J-Tekin, 1(1), 24-30
  7. Dinata, R.K., Safwandi, S., Hasdyna, N., Azizah, N., 2020. Analisis K-Means Clustering pada Data Sepeda Motor. Informal: Informatics Journal, 5(1), 10-17. https://doi.org/10.19184/isj.v5i1.17071
  8. Hamim, M., Moudden, I.E., Ouzir, M., Moutachaouik, H., Hain, M., 2021. A Novel Dimensionality Reduction Approach To Improve Microarray Data Classification. IIUM Engineering Journal, 22(1), 1–22. https://doi.org/10.31436/iiumej.v22i1.1447
  9. Handriani, E., Irianti, T.E., 2016. Investment Opportunity Set (IOS) Berbasis Pertumbuhan Perusahaan dan Kaitannya dengan Upaya Peningkatan Nilai Perusahaan. Jurnal Ekonomi dan Bisnis, 18(1), 83–99. https://doi.org/10.24914/jeb.v18i1.267
  10. Hariyanto, D., Sastra, R., & Putri, F. E. (2021). Implementasi Metode Rapid Application Development Pada Sistem Informasi Perpustakaan. Jurnal Jupiter, 13(1), 110–117
  11. Harjanti, W., Ardiansyah, D.R., Hwihanus, 2019. Influence Investment Opportunity Set ( IOS ) with Value of The Firm in Manufacturing Company Food & Beverage Listed in Indonesia Stock Exchange. IOSR Journal of Economics and Finance (IOSR-JEF), 10(3), 18–23. http://dx.doi.org/10.9790/5933-1003031823
  12. Hermuningsih, S., 1998. Pengaruh Profitabilitas, Growth Opportunity, Sruktur Modal Terhadap Nilai Perusahaan pada Perusahaan di Indonesia. Buletin Ekonomi Moneter dan Perbankan, 16(2), 127-148. https://doi.org/10.21098/bemp.v16i2.27
  13. Hutabri, E., 2019. Penerapan Metode Rapid Application Development (Rad) Dalam Perancangan Media Pembelajaran Multimedia. Innovation In Research Of Informatics (Innovatics), 1(2), 57–62. https://doi.org/10.37058/innovatics.v1i2.932
  14. Istianto, Y., ’Uyun, S., 2021. Klasifikasi Kebutuhan Jumlah Produk Makanan Customer Menggunakan K-Means Clustering dengan Optimasi Pusat Awal Cluster Algoritma Genetika. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(5), 861-870. https://doi.org/10.25126/jtiik.2021842990
  15. Jambak, M. I., Efendi, R., 2021. Pengaruh Reduksi Dimensi Terhadap Metode Pengklasteran Berbasis Centroid dan Metode Pengklasteran Berbasis Density dalam Pengklasteran Dokumen Teks. Indonesian Journal of Business Intelligence (IJUBI), 4(2), 53-62. http://dx.doi.org/10.21927/ijubi.v4i2.1918
  16. Jannah, S.M., Yuliana, I., 2021. Pengaruh Ukuran Perusahaan Terhadap Nilai Perusahaan dengan Struktur Modal Sebagai Variabel Intervening (Studi pada Perusahaan Sektor Pertambangan dan Sektor Industri Barang Konsumsi yang Terdaftar di Bei Tahun 2018-2020). Jurnal Manajemen dan Bisnis Sriwijaya, 19(3), 220-234
  17. Junirianto, E., Kurniadin, N., 2020. Pengembangan Aplikasi Point of Sale Berbasis Android Menggunakan Metode Rapid Application Development. Jointecs (Journal Of Information Technology And Computer Science), 5(3), 211. https://doi.org/10.31328/jointecs.v5i3.1564
  18. Khotimah, B.K., Syarief, M., Miswanto, Suprajitno, H., 2021. Optimasi Bobot K-Means Clustering untuk Mengatasi Missing Value dengan Menggunakan Algoritma Genetika. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(4), 745-752. https://doi.org/10.25126/jtiik.2021844912
  19. Mahfuz, N.M., Yusoff, M., Idrus, Z., 2023. Clustering Heterogeneous Categorical Data Using Enhanced Mini Batch K-Means With Entropy Distance Measure. International Journal Of Electrical And Computer Engineering, 13(1), 1048-1059. http://doi.org/10.11591/ijece.v13i1.pp1048-1059
  20. Mahmood, A., Bashir, J., 2020. How Does Corporate Social Responsibility Transform Brand Reputation Into Brand Equity? Economic And Noneconomic Perspectives Of Csr. International Journal Of Engineering Business Management, 12, 1-13. https://doi.org/10.1177/1847979020927547
  21. Monalisa, S., Nurainun, T., Hartati, M., 2021. Penerapan Algoritma K-Means Dan Metode Marketing Mix dalam Segmentasi Mahasiswa dan Strategi Pemasaran. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(1), 61-68. https://doi.org/10.25126/jtiik.0811939
  22. Myers, S.C., Majluf, N.S., 1984. Corporate Financing and Investment Decision When Firms Have That Investor Do Not Have. Journal of Financial Economics, 13(2), 187-221. https://doi.org/10.1016/0304-405X(84)90023-0
  23. Nasari, F., Tanjung, D.H., Handayani, F., 2023. Optimasi Metode K-Means dan K-Medoids Berdasarkan Jumlah Cluster dan Nilai DBI dalam Pengelompokkan Produksi Kelapa Sawit di Provinsi Riau. Infosys (Information System) Journal, 7(2), 129-141. https://doi.org/10.22303/infosys.7.2.2023.129-141
  24. Pratama, F.H., Triayudi, A., Mardiani, E., 2022. Data Mining K-Medoids dan K-Means untuk Pengelompokan Potensi Produksi Kelapa Sawit di Indonesia. Jipi (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 7(4), 1294-1310. https://doi.org/10.29100/jipi.v7i4.3237
  25. Pranoto, Y.A., Muslim, M.A., Hasanah, R.N., 2019. Rancang Bangun dan Analisis Decision Support System Menggunakan Metode Analytical Hierarchy Process untuk Penilaian Kinerja Karyawan. Jurnal Eeccis, 7(1), 91-96. https://doi.org/10.21776/jeeccis.v7i1.209
  26. Priyanto, T., Fathoni, M.A., 2021. Potential Mapping of Pesantren as Community Economic Empowerment Capital. Journal of Economics, Business, and Government Challenges, 2(01), 58-70. https://doi.org/10.33005/ebgc.v2i1.65
  27. Pulukadang, D.R., Mustafid, Farikhin, 2015. Pendekatan Clustering untuk Ekstraksi Pengetahuan pada Pembangunan Sistem Manajemen Pengetahuan. Jurnal Sistem Informasi Bisnis, 5(2), 79-83. https://doi.org/10.21456/vol5iss2pp79-83
  28. Rahman, A., 2020. Rapid Application Development Sistem Pembelajaran Daring Berbasis Android. INTECH (Informatika Dan Teknologi), 1(2), 20-25. https://doi.org/10.54895/intech.v1i2.639
  29. Řezanková, H., 2018. Different Approaches to the Silhouette Coefficient Calculation in Cluster Evaluation. 21st International Scientific Conference Amse, 1-10
  30. Rivan, M.E.A, Steven, Tanzil, W., 2020. Optimasi Fuzzy C-Means dan K-Means Menggunakan Algoritma Genetika untuk Pengklasteran Dataset Diabetic Retinopathy. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(5), 993-1000. https://doi.org/10.25126/jtiik.2020711872
  31. Robani, M., Widodo, A., 2016. Algoritma K-Means Clustering untuk Pengelompokan Ayat Al Quran pada Terjemahan Bahasa Indonesia. Jurnal Sistem Informasi Bisnis, 6(2), 164-176. https://doi.org/10.21456/vol6iss2pp164-176
  32. Sari, R.W., Wanto, A., Windarto, A.P., 2018. Implementasi Rapidminer dengan Metode K-Means (Study Kasus: Imunisasi Campak pada Balita Berdasarkan Provinsi). Komik (Konferensi Nasional Teknologi Informasi dan Komputer), 2(1), 224–230. http://dx.doi.org/10.30865/komik.v2i1.930
  33. Sari, Y., Baskara, A.R., Prakoso, P.B., 2022. Penerapan Metode K-Means Berbasis Jarak untuk Deteksi Kendaraan Bergerak. Jurnal Teknologi Informasi dan Ilmu Komputer, 9(4), 683-690. https://doi.org/10.25126/jtiik.2022945768
  34. Sholikhah, Z., Baroroh, N., 2021. The Roles of Capital Intensity in Moderating Managerial Ownership and Investment Opportunity Set (IOS) on Accounting Conservatism. Accounting Analysis Journal, 10(1), 25-31. https://doi.org/10.15294/aaj.v10i1.40114
  35. Simanjuntak, H.T.A., Silaban, P.E.P., Manurung, J. K. S., Sormin, V.H., 2023. Klasterisasi Berita Bahasa Indonesia dengan Menggunakan K-Means dan Word Embedding. Jurnal Teknologi Informasi dan Ilmu Komputer, 10(3), 641-652. https://doi.org/10.25126/jtiik.20231026468
  36. Sismadi, S., 2022. Penerapan Model RAD pada Perancangan Sistem Informasi Pendaftaran Mutasi Penduduk Disdukcapil Kota Bogor. Jurnal Teknik Komputer Amik Bsi, 8(2), 174–180. https://doi.org/10.31294/jtk.v7i1.9625
  37. Sudaryo, Y., Purnamasari, D., 2019. Pengaruh Return on Assets, Debt to Equity Ratio dan Invesment Opportunity Set Terhadap Nilai Perusahaan Consumer Goods yang Terdaftar di Bursa Efek Indonesia Periode 2013-2017. Ekonam: Jurnal Ekonomi, Akuntansi & Manajemen, 1(1), 15-26. https://doi.org/10.37577/ekonam.v1i1.100
  38. Sudiani, N.K.A., Darmayanti, N.P.A., 2019. Pengaruh Profitabilitas, Likuiditas Pertumbuhan dan Investment Opportunity Set Terhadap Nilai Perusahaan. E-Jurnal Manajemen Universitas Udayana, 5(7), 4545-4547
  39. Suhardi, H., 2021. Pengaruh Leverage, Profitabilitas, dan Ukuran Perusahaan Terhadap Nilai Perusahaan Manufaktur Sektor Industri Dasar dan Kimia yang Terdaftar di Bei. Jurnal Manajemen Bisnis Dan Kewirausahaan, 5(1), 77-81. https://doi.org/10.24912/jmbk.v5i1.10834
  40. Surohman, Fabrianto, L., Riza, F., Faizah, N.M., 2021. Korelasi Antara Profil dan Nilai Akademis Siswa dengan Menggunakan Algoritma K-Means. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(4), 845-852. https://doi.org/10.25126/jtiik.2021843034
  41. Suryandani, A., 2018. Pengaruh Pertumbuhan Perusahaan, Ukuran Perusahaan, dan Keputusan Investasi Terhadap Nilai Perusahaan Pada Perusahaan Sektor Property dan Real Estate. Business Management Analysis Journal (BMAJ), 1(1), 49-59. https://doi.org/10.24176/bmaj.v1i1.2682
  42. Suwardika, I.N.A., Mustanda, I.K., 2017. Pengaruh Leverage, Ukuran Perusahaan, Pertumbuhan Perusahaan, dan Profitabilitas Terhadap Nilai Perusahaan pada Perusahaan Properti. E-Jurnal Manajemen Universitas Udayana, 6(3), 1248-1277
  43. Syafrizal, M., 2010. Sistem Pendukung Keputusan (Decision Support System). Open Journal System " Jurnal Dasi ", 11(3), 1-14
  44. Syardiana, G., Rodoni, A., Putri, Z.E., 2016. Pengaruh Investment Opportunity Set, Struktur Modal, Pertumbuhan Perusahaan, dan Return on Asset Terhadap Nilai Perusahaan. Akuntabilitas, 8(1), 39-46. https://doi.org/10.15408/akt.v8i1.2760
  45. Tamaela, J., Sediyono, E., Setiawan, A., 2017. Cluster Analysis Menggunakan Algoritma Fuzzy C-Means dan K-Means untuk Klasterisasi dan Pemetaan Lahan Pertanian di Minahasa Tenggara. Jurnal Buana Informatika, 8(3), 151-160. https://doi.org/10.24002/jbi.v8i3.1317
  46. Tambunan, H.B., Barus, D.H., Hartono, J., Alam, A.S., Nugraha, D.A., Usman, H.H.H., 2020. Electrical Peak Load Clustering Analysis using K-Means Algorithm and Silhouette Coefficient. 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), 258-262. https://doi.org/10.1109/ICT-PEP50916.2020.9249773
  47. Turnip, T.N., Manik, P.O., Tampubolon, J.H., Siahaan, P.A.P., 2020. Klasifikasi Aplikasi Android menggunakan Algoritme K-Means dan Convolutional Neural Network berdasarkan Permission. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(2), 399-406. https://doi.org/10.25126/jtiik.2020702641
  48. Warisa, Nurahman, 2023. Perbandingan Performa Cluster Model Algoritma K-Means dalam Mengelompokkan Penerima Bantuan Program Keluarga Harapan. Jurnal Sistem Informasi Bisnis, 13(1), 20-28. https://doi.org/10.21456/vol13iss1pp20-28
  49. Wulanningsih, S., Agustin, H., 2020. Pengaruh Investment Opportunity Set, Pertumbuhan Perusahaan dan Profitabilitas Terhadap Nilai Perusahaan. Jurnal Eksplorasi Akuntansi, 2(3), 3107-3124. https://doi.org/10.24036/jea.v2i3.271
  50. Yani, A., Setiawan, D., Sofian, N. E., Subagja, R., & Desyani, T. (2020). Pengujian Aplikasi Reservasi Hotel Di Legreen Hotel & Suite Dengan Metode Black Box Testing Boundary Value Analysis. Jurnal Teknologi Sistem Informasi Dan Aplikasi, 3(2), 114. Https://Doi.Org/10.32493/Jtsi.V3i2.4686
  51. Yaqin, M.A., Imamah, N., 2021. Analisis Faktor Penentu Price Earnings Ratio: Studi pada Perusahaan yang Terdaftar di Bursa Efek Indonesia. Profit : Jurnal Administrasi Bisnis, 15(2), 24-39. https://doi.org/10.21776/ub.profit.2021.015.02.3
  52. Yulianto, A., 2021. Decision Support System for Selection of Outstanding Students at the Faculty of Mathematics in Natural Sciences at the University of Yogyakarta with AHP and Topsis Methods. Journal of Intelligent Decision Support System (IDSS), 4(3), 72-83. https://doi.org/10.35335/idss.v4i3.73

Last update:

No citation recorded.

Last update: 2025-01-19 01:52:13

No citation recorded.