skip to main content

Analysis of Self-Efficacy and User Satisfaction in Continuance Usage of The Gobis Surabaya Application through PLS-SEM Approach

Sony Abdhillah  -  Information System, Universitas Internasional Semen Indonesia, Kompleks PT. Semen Indonesia (Persero) Tbk, Jl. Veteran, Kb. Dalem, Sidomoro, Kebomas, Gresik Regency, East Java, Indonesia, 61122|Universitas Internasional Semen Indonesia, Indonesia
*Tikno Tikno orcid scopus  -  Information System, Universitas Internasional Semen Indonesia, Kompleks PT. Semen Indonesia (Persero) Tbk, Jl. Veteran, Kb. Dalem, Sidomoro, Kebomas, Gresik Regency, East Java, Indonesia, 61122|Universitas Internasional Semen Indonesia, Indonesia
Open Access Copyright (c) 2025 Jurnal Sistem Informasi Bisnis

Citation Format:
Abstract

This study aims to examine the factors influencing the sustained usage of the GoBis e-government application in Surabaya, Indonesia. By investigating constructs such as Information Quality (IQ), Personal Outcome Expectation (POE), Self-Efficacy (SE), Satisfaction (SAT), Service Quality (SQ), Social Influence (SI), and Prior Experience (PE), the research utilizes Structural Equation Modeling - Partial Least Squares (SEM-PLS) to analyze user engagement and behavior. The analysis, based on a sample of 409 respondents, reveals that Information Quality, Personal Outcome Expectation, Self-Efficacy, and Satisfaction significantly impact users' intention to continue using the application. Specifically, Information Quality was identified as a crucial determinant, influencing Continuance Intention, Self-Efficacy, and Satisfaction, highlighting the importance of high-quality information in building user confidence and satisfaction. In contrast, Service Quality and Social Influence were found to have a limited effect on Continuance Intention, suggesting that these factors contribute to user satisfaction but are not primary drivers of long-term engagement. The findings emphasize the need for improving user experiences by enhancing information quality, promoting self-efficacy programs, and providing regular user-centered updates. The study concludes with recommendations for stakeholders to focus on continuous service improvements and regular user feedback evaluations to meet evolving public service standards and foster higher community engagement.

Note: This article has supplementary file(s).

Fulltext |  Data Set
Survey Data on User Experience and Demographics for GoBis Application in Surabaya
Subject
Type Data Set
  Download (65KB)    Indexing metadata
Keywords: Self-efficacy; User Satisfaction; E-government; GoBis; Surabaya

Article Metrics:

  1. Adnan, M., Ghazali, M., & Othman, N. Z. S. (2022). E-participation within the context of e-government initiatives: A comprehensive systematic review. Telematics and Informatics Reports, 8, 100015. https://doi.org/10.1016/j.teler.2022.100015
  2. Al-Dwairi, R. M., Al-Khataybeh, M., Najadat, D., & Rawashdeh, A. (2024). User self-efficacy enhances business intelligence tools for organizational agility. Indonesian Journal of Electrical Engineering and Computer Science, 36(1), 592. https://doi.org/10.11591/ijeecs.v36.i1.pp592-602
  3. Alkraiji, A. I. (2020). Citizen Satisfaction With Mandatory E-Government Services: A Conceptual Framework and an Empirical Validation. IEEE Access, 8, 117253–117265. https://doi.org/10.1109/ACCESS.2020.3004541
  4. Alruwaie, M., El-Haddadeh, R., & Weerakkody, V. (2020). Citizens’ continuous use of eGovernment services: The role of self-efficacy, outcome expectations and satisfaction. Government Information Quarterly, 37(3), 101485. https://doi.org/10.1016/j.giq.2020.101485
  5. Bandura, A. (1997). Self-efficacy: The exercise of control. W.H. Freeman
  6. Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351. https://doi.org/10.2307/3250921
  7. Chen, M., Sun, Y., Waygood, E. O. D., Yu, J., & Zhu, K. (2022). User characteristics and service satisfaction of car sharing systems: Evidence from Hangzhou, China. PLOS ONE, 17(2), e0263476. https://doi.org/10.1371/journal.pone.0263476
  8. Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences (0 ed.). Routledge. https://doi.org/10.4324/9780203771587
  9. Collis, J., & Hussey, R. (2014). Business research: A practical guide for undergraduate & postgraduate students (1. Publ.; 4. ed). Palgrave Macmillan
  10. Dash, G., & Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technological Forecasting and Social Change, 173, 121092. https://doi.org/10.1016/j.techfore.2021.121092
  11. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
  12. Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 56–83. https://doi.org/10.1080/10705519909540119
  13. Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104
  14. GALGOTIAS UNIVERSITY, & Anand, D. (2024). CUSTOMER PERCEPTION TOWARDS DIGITAL TRANSACTION. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 08(05), 1–5. https://doi.org/10.55041/IJSREM34339
  15. Ghose, A., & Ravindran, B. (2020). Interpretability With Accurate Small Models. Frontiers in Artificial Intelligence, 3, 3. https://doi.org/10.3389/frai.2020.00003
  16. Hsu, M. H., Chiu, C. M., & Ju, T. L. (2004). Determinants of continued use of the WWW: An integration of two theoretical models. Industrial Management & Data Systems, 104(9), 766–775. https://doi.org/10.1108/02635570410567757
  17. Jasperson, Carter, & Zmud. (2005). A Comprehensive Conceptualization of Post-Adoptive Behaviors Associated with Information Technology Enabled Work Systems. MIS Quarterly, 29(3), 525. https://doi.org/10.2307/25148694
  18. Kusuma, G. D., Rosidi, & Iqbal, S. (2023). THE IMPACT OF OVERALL QUALITY AND SELF-EFFICACY ON CONATIVE USE WITH USER’S SATISFACTION AS A MEDIATION VARIABLE. Russian Journal of Agricultural and Socio-Economic Sciences, 139(7), 85–97. https://doi.org/10.18551/rjoas.2023-07.10
  19. Li, Y., & Shang, H. (2020). Service quality, perceived value, and citizens’ continuous-use intention regarding e-government: Empirical evidence from China. Information & Management, 57(3), 103197. https://doi.org/10.1016/j.im.2019.103197
  20. Lin, F., Fofanah, S. S., & Liang, D. (2011). Assessing citizen adoption of e-Government initiatives in Gambia: A validation of the technology acceptance model in information systems success. Government Information Quarterly, 28(2), 271–279. https://doi.org/10.1016/j.giq.2010.09.004
  21. Lin, J.-C., Chen, Z.-H., Chen, X.-D., & Wang, S.-B. (2021). Circulating sFasL Levels Predict the Severity and Outcome of Burn Injury: A Prospective Observational Study. Journal of Surgical Research, 265, 1–10. https://doi.org/10.1016/j.jss.2021.01.012
  22. MacLean, D., & Titah, R. (2022). A Systematic Literature Review of Empirical Research on the Impacts of e‐Government: A Public Value Perspective. Public Administration Review, 82(1), 23–38. https://doi.org/10.1111/puar.13413
  23. Mushi, R. (2024). INVESTIGATING THE ROLE OF SELF-EFFICACY ON ACCEPTANCE OF E-GOVERNMENT IN TANZANIA. Journal of Engineering, Management and Information Technology, 2(3), 139–146. https://doi.org/10.61552/JEMIT.2024.03.005
  24. Nadhira, R., Hamdi, H., Putri, S. A. E., & Shakilla Ervi, T. (2024). Enhancing citizen satisfaction and loyalty in e-government: Lessons learned from Jakarta COVID-19 website. Information Services & Use, 44(2), 121–138. https://doi.org/10.3233/ISU-240229
  25. Nafi’ah, B. A. (2023). Local Government Expansion of Mobile Governance during the Pandemic. Jurnal Borneo Administrator, 19(2), 191–204. https://doi.org/10.24258/jba.v19i2.1129
  26. Napitupulu, D., Usino, W., Azmi, N. A., Kartika, R. S., Supratikta, H., Suhendra, A., Yohanitas, W. A., Saksono, H., Halik, A., & Suhandojo, S. (2024). Understanding the key driver of e-government services continuance usage intention: An integrated model of Expectation Confirmation Model and Technology Acceptance Model. Journal of Infrastructure, Policy and Development, 8(12), 7957. https://doi.org/10.24294/jipd.v8i12.7957
  27. NGUYEN, T. T., PHAN, D. M., LE, A. H., & NGUYEN, L. T. N. (2020). The Determinants of Citizens’ Satisfaction of E-Government: An Empirical Study in Vietnam. The Journal of Asian Finance, Economics and Business, 7(8), 519–531. https://doi.org/10.13106/JAFEB.2020.VOL7.NO8.519
  28. Olsen, M., & Raunak, M. (2019). Quantitative Measurements of Model Credibility. In Model Engineering for Simulation (pp. 163–187). Elsevier. https://doi.org/10.1016/B978-0-12-813543-3.00008-1
  29. Pham, L., Limbu, Y. B., Le, M. T. T., & Nguyen, N. L. (2023). E-government service quality, perceived value, satisfaction, and loyalty: Evidence from a newly emerging country. Journal of Public Policy, 43(4), 812–833. https://doi.org/10.1017/S0143814X23000296
  30. Pitri, A., & Abdillah, L. A. (2022). Usability Testing untuk Mengukur Kepuasaan Pengguna Website Mailo Store (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2207.00006
  31. Poh, R., & Kanesan Abdullah, A. G. B. (2019). Factors Influencing Students’ Research Self-Efficacy: A Case Study of University Students in Malaysia. Eurasian Journal of Educational Research, 19(82), 1–32. https://doi.org/10.14689/ejer.2019.82.8
  32. Santa, R., MacDonald, J. B., & Ferrer, M. (2019). The role of trust in e-Government effectiveness, operational effectiveness and user satisfaction: Lessons from Saudi Arabia in e-G2B. Government Information Quarterly, 36(1), 39–50. https://doi.org/10.1016/j.giq.2018.10.007
  33. Shibambu, A. (2024). Transformation of digital government services in the public sector in South Africa. Africa’s Public Service Delivery and Performance Review, 12(1). https://doi.org/10.4102/apsdpr.v12i1.753
  34. Siwi, T. P. U., & Nawawi, Z. (2023). Building Citizen Satisfaction Towards E-Government Services: A Conceptual Framework. Jurnal Manajemen Pelayanan Publik, 6(2), 253. https://doi.org/10.24198/jmpp.v6i2.46471
  35. Tegethoff, T. M., Santa, R., Granobles, D. F. M., & Hoyos, J. C. V. (2019). Does trust have an impact on system and operational effectiveness The implementation of e-government in Colombia. Electronic Government, an International Journal, 15(3), 241. https://doi.org/10.1504/EG.2019.100516
  36. The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. (2003). Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748
  37. Venkatesh, V., Thong, J. Y. L., Chan, F. K. Y., Hu, P. J.-H., & Brown, S. A. (2011). Extending the two-stage information systems continuance model: Incorporating UTAUT predictors and the role of context: Context, expectations and IS continuance. Information Systems Journal, 21(6), 527–555. https://doi.org/10.1111/j.1365-2575.2011.00373.x
  38. Zhao, F., Wallis, J., & Singh, M. (2015). E-government development and the digital economy: A reciprocal relationship. Internet Research, 25(5), 734–766. https://doi.org/10.1108/IntR-02-2014-0055
  39. Zheng, B. Q., & Bentler, P. M. (2024). Enhancing Model Fit Evaluation in SEM: Practical Tips for Optimizing Chi-Square Tests. Structural Equation Modeling: A Multidisciplinary Journal, 1–6. https://doi.org/10.1080/10705511.2024.2354802

Last update:

No citation recorded.

Last update: 2025-07-16 20:20:17

No citation recorded.