skip to main content

Book Classification System Based on Dewey Decimal Classification by Multinomial Naïve Bayes Method

*Esti Mulyani  -  Politeknik Negeri Indramayu, West Java, Indonesia, Indonesia
Munengsih Sari Bunga  -  Politeknik Negeri Indramayu, West Java, Indonesia, Indonesia
Fauzan Ishlakhuddin  -  Politeknik Negeri Indramayu, West Java, Indonesia, Indonesia
Kastuti Kastuti  -  Politeknik Negeri Indramayu, West Java, Indonesia, Indonesia
Open Access Copyright (c) 2025 Jurnal Sistem Informasi Bisnis

Citation Format:
Abstract

Libraries have the main task of processing library materials by classifying books according to certain methods. Dewey Decimal Classification (DDC) is the most widely used method in the world to determine book classification in libraries. However, the classification process using DDC is inefficient because it takes a long time for the large number of books in the library. This is a serious problem experienced by all libraries, so a solution is needed to bridge the problem. automatic classification system can be the right alternative to overcome the problem. In this research, an automatic classification system based on DDC using the Multinomial Naive Bayes Method so that it can speed up the classification process. This system was created using the CodeIgniter framework with the PHP programming language and MariaDB. Test results from 100 training data and 30 test data show that there are 24 test data with correct classification results and 6 test data with incorrect classification results. So it can be concluded that the accuracy rate of the test is 80%.

Fulltext View|Download
Keywords: Dewey Decimal Classification; Book Classification System; Multinomial Naïve Bayes; Automatic Classification; CodeIgniter Framework

Article Metrics:

  1. Alaei, A. R., Becken, S., & Stantic, B. (2019). Sentiment analysis in tourism: Capitalizing on big data. Journal of Travel Research, 58(2), 175–191. https://doi.org/10.1177/0047287517747753
  2. Aliyah, K., Kisworo, B., Miraj, S., & Gupta, S. (2024). Pengaruh media sosial terhadap pemberdayaan masyarakat. Jurnal Pendidikan dan Pemberdayaan Masyarakat, 11(1), 26–38
  3. Arman, A. A., & Sidik, A. P. (2019, October 19–20). Measurement of engagement rate in Instagram (Case study: Instagram Indonesian government ministry and institutions). In 2019 International Conference on ICT for Smart Society (ICISS) (pp. 1–6). Bandung, Indonesia. IEEE. https://doi.org/10.1109/ICISS48059.2019.8969826Bloor, D., & Moffatt, S. (2017). Consumer behavior in digital marketing. Journal of Marketing Research, 54(3), 455–468
  4. Baygin, M. (2019). Classification of Text Documents based on Naive Bayes using N-Gram Features. 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018, 1–5. https://doi.org/10.1109/IDAP.2018.8620853
  5. Freberg, K., Graham, K., McGaughey, K., & Freberg, L. A. (2011). Who are the social media influencers? A study of public perceptions of personality. Public Relations Review, 37(1), 90–92. https://doi.org/10.1016/j.pubrev.2010.11.001
  6. Flinta, N. (2022). The evolution of interdisciplinary research methodologies. Journal of Interdisciplinary and Multidisciplinary Research Literature, 7(1), 1–15
  7. George, O. A., & Ramos, C. M. Q. (2024). Wellness tourism and digital transformation. International Journal of Spa and Wellness, 7(2), 139–161. https://doi.org/10.1080/24721735.2024.000000
  8. Herron, N. L., Editor, G., Fourie, D. K., Dowell, D. R., Edward Evans, G., Intner, S. S., & Weihs, J. (2017). Developing Library and Information Center Collections. https://archive.org/details/developinglibraryOOedwa
  9. Ibrahim, A. (2017). Pengantar Ilmu Perpustakaan dan Arsiparis. Gunadarma Ilmu
  10. Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003
  11. Kumar, V., Pozza, I. D., & Ganesh, J. (2016). Multichannel marketing: Mindset and program development. Journal of Marketing, 80(2), 40–58. https://doi.org/10.1509/jm.15.0189
  12. Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool Publishers. https://doi.org/10.2200/S00416ED1V01Y201204HLT016
  13. Manning, C. D., Raghavan, P., & Schütze, H. (2008). An introduction to information retrieval. Cambridge University Press
  14. Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. https://doi.org/10.1016/j.asej.2014.04.011
  15. Monacho, B. C., & Slamet, Y. (2023). Strategi komunikasi pemasaran digital. Jurnal Komunikasi, 39(3), 373–388
  16. Mulyani, E., Muhamad, F. P. B., & Cahyanto, K. A. (2021). Pengaruh N-Gram terhadap Klasifikasi Buku menggunakan Ekstraksi dan Seleksi Fitur pada Multinomial Naïve Bayes. Jurnal Media Informatika Budidarma, 5(1), 264. https://doi.org/10.30865/mib.v5i1.2672
  17. Niwareeba, R., Cox, M. A., & Cheng, L. (2023). Adaptive-mode PAPR reduction algorithm for optical OFDM systems leveraging lexicographical permutations. Electronics, 12(13), 2797. https://doi.org/10.3390/electronics12132797
  18. P Pak, A., & Paroubek, P. (2010). Twitter as a corpus for sentiment analysis and opinion mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10) (pp. 1320–1326). European Language Resources Association
  19. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
  20. Saha, S., & Hatua, S. R. (2021). A Comparative Analysis of Structural Layout Changes in 1st To 23rd Edition of Dewey Decimal Classification Scheme. Library Herald, 59(3), 56–64. https://doi.org/10.5958/0976-2469.2021.00022.1
  21. Setianingrum, A. H., Kalokasari, D. H., & Shofi, I. M. (2018). Implementasi Algoritma Multinomial Naive Bayes Classifier. Jurnal Teknik Informatika, 10(2), 109–118. https://doi.org/10.15408/jti.v10i2.6822
  22. Smith, A., & Zook, Z. (2011). Social media marketing strategies. Journal of Business Research, 64(3), 271–278. https://doi.org/10.1016/j.jbusres.2009.11.014
  23. Sri Eka Putri. (2017). Keterampilan Pustakawan dalam Mengklasifikasi Pustaka dengan Menggunakan Dewey Decimal Classification
  24. Stolte, D. (2023). Assessing the engagement of social media marketing: The case study of a tourism Toronto video-based marketing campaign (Master’s thesis, Toronto Metropolitan University). Retrieved from https://rshare.library.torontomu.ca/articles/thesis/Assessing_the_engagement_of_social_media_marketing_the_case_study_of_a_tourism_Toronto_video-based_marketing_campaign/14647614
  25. Toly, A. A., Angel, M., & Roedyanto, J. F. (2023). Digital conference proceedings and their impact. Journal of International Conference Proceedings, 6(1), 35–52
  26. Varadainy, Z., Helita, W., Hermansyah, M., & Rahmawati, I. D. (2024). Business trends in digital learning platforms. International Journal of Business, Learning, and Professional Studies, 1(1), 1–6
  27. De Vries, L., Gensler, S., & Leeflang, P. S. H. (2012). Popularity of brand posts on brand fan pages: An investigation of the effects of social media marketing. Journal of Interactive Marketing, 26(2), 83–91. https://doi.org/10.1016/j.intmar.2012.01.003
  28. Wang, B., Jin, X., & Ma, N. (2024). Artificial intelligence in marketing. Kybernetes. https://doi.org/10.1108/K-04-2023-0456
  29. Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). Advances in artificial intelligence: A comprehensive review. Artificial Intelligence Review, 55(8), 5731–5780. https://doi.org/10.1007/s10462-022-10164-9
  30. Watthananon, J. (2015). The relationship of text categorization using Dewey Decimal Classification techniques. International Conference on ICT and Knowledge Engineering, 2015-Janua(January), 72–77. https://doi.org/10.1109/ICTKE.2014.7001538
  31. Yew, R. L. H., Suhaidi, S. B., Seewoochurn, P., & Sevamalai, V. K. (2018, October 26–28). Social network influencers’ engagement rate algorithm using Instagram data. In 2018 Fourth International Conference on Advances in Computing, Communication & Automation (ICACCA) (pp. 1–6). IEEE. https://doi.org/10.1109/ICACCAF.2018.8776839
  32. Yu, X., Hua, J., Bao, T., & Zhang, H. (2023). A novel PAPR reduction scheme for low-cost terminals in 6G. Energies, 16(8), 3307. https://doi.org/10.3390/en16083307

Last update:

No citation recorded.

Last update: 2025-12-19 15:01:41

No citation recorded.